X-ray signature of shock modification in SN 1006 Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era July 8-10 2009, Boston, USA Marco Miceli.

Slides:



Advertisements
Similar presentations
The hard X-ray spectrum of Pulsar Wind Nebulae Data-models comparison in the Simbol-X era F. Bocchino, INAF Osservatorio Astronomico di Palermo with contributions.
Advertisements

Simulated synchrotron emission from Pulsar Wind Nebulae Delia Volpi Dipartimento di Astronomia e Scienza dello Spazio-Università degli Studi di Firenze-Italia.
(2) Profile of the Non-Thermal Filaments of SNRs =>High Energy Particle Acceleration =>High Energy Particle Acceleration In all the SNRs & GC Non Thermal.
Suzaku Discovery of Fe K-Shell Line from the O-rich SNR G Arxiv: Fumiyoshi Kamitukasa et al.
Radio and X-ray emission in radio-quiet quasars Katrien C. Steenbrugge, Katherine M. Blundell and Zdenka Kuncic Instituto de Astronomía, UCN Department.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae S.P. Reynolds et al. Martin, Tseng Chao Hsiung 2013/12/18.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
1 The Multi-Messenger Approach to Unidentified Gamma-Ray Sources Morphological and spectral studies of the shell-type supernova remnants RX J
Strange Galactic Supernova Remnants G (the Tornado) & G in X-rays Anant Tanna Physics IV 2007 Supervisor: Prof. Bryan Gaensler.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.
The Sharpest Spatial View of a Black Hole Accretion Flow from the Chandra X-ray Visionary Project Observation of the NGC 3115 Bondi Region Jimmy Irwin.
October 10, 2002COSPAR Houston, TX1 X-Ray Spectral Morphologies of Young Supernova Remnants John P. Hughes Rutgers University  Cara Rakowski, Rutgers.
Luigina Feretti Istituto di Radioastronomia CNR Bologna, Italy Radio observations of cluster mergers X-Ray and Radio Connections, Santa Fe, NM February.
Centaurus A Kraft, Hardcastle, Croston, Worrall, Birkinshaw, Nulsen, Forman, Murray, Goodger, Sivakoff,Evans, Sarazin, Harris, Gilfanov, Jones X-ray composite.
Facts about SNe and their remnants Evolution of an SNR sensitively depends on its environment. Observed SNRs are typically produced by SNe in relative.
Cosmic ray acceleration in the MSH supernova remnant (RCW 86) Eveline Helder together with: Jacco Vink, Cees Bassa, Aya Bamba,
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
New evidence for strong nonthermal effects in Tycho’s supernova remnant Leonid Ksenofontov 1 H.J.Völk 2, E.G.Berezhko 1, 1 Yu.G.Shafer Institute of Cosmophysical.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
March 11-13, 2002 Astro-E2 SWG 1 John P. Hughes Rutgers University Some Possible Astro-E2 Studies of Supernova Remnants.
Marco Miceli, INAF – Osservatorio Astronomico di Palermo Consorzio COMETA, Italy Collaborators F. Bocchino, INAF – Osservatorio Astronomico di Palermo,
An X-ray Study of the Bright Supernova Remnant G with XMM-Newton SNRs and PWNe in the Chandra Era Boston, MA – July 8 th, 2009 Daniel Castro,
Rino Bandiera, Arcetri Obs., Firenze, ItalyA Basic Course on SNRs A Basic Course on Supernova Remnants Lecture #1 –How do they look and how are observed?
Title: Quién le pone el cascabel al gato ? J. F. Albacete Colombo Univ. de Rio Negro, Viedma, ARG & Ettore Flaccomio Osservatorio Astronomico di Palermo,
David Henley, University of BirminghamX-ray & Radio Connections, Santa Fe, February 2004 Probing Colliding Wind Binaries with High-Resolution X-ray Spectra.
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Diagnostics of the origin of X- ray emission in Cygnus Loop Xin Zhou, INAF – Osservatorio Astronomico di Palermo, Italy & Nanjing University, ChinaCollaborators:
「すざく」による SN1006 の観測 Suzaku observations of SN1006 Aya BAMBA (ISAS/JAXA)
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
The Hot Plasma in the Galactic Center with Suzaku Masayoshi Nobukawa, Yoshiaki Hyodo, Katsuji Koyama, Takeshi Tsuru, Hironori Matsumoto (Kyoto Univ.)
Saclay Irfu Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era, Boston, July 2009 X-ray Observations of Supernova Remnants Anne Decourchelle.
ASCI/Alliances Center for Astrophysical Thermonuclear Flashes Evaporation of Clouds in Thermally Conducting, Radiative Supernova Remnants S. Orlando (1),
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
Suzaku, XMM-Newton and Chandra Observations of the Central Region of M 31 Hiromitsu Takahashi (Hiroshima University, Japan) M. Kokubun, K. Makishima, A.
COSPAR 2008, Montreal, 13 July Patrick Slane (CfA) X-ray Observations of Supernova Remnant Shocks.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Rino Bandiera, Arcetri Obs., Firenze, ItalyA Basic Course on SNRs A Basic Course on Supernova Remnants Lecture #1 –How do they look and how are observed?
Charge Exchange in Cygnus Loop R. S. Cumbee et al Satoru Katsuda et al Zhang Ningxiao.
Observations of SNR RX J with CANGAROO-II telescope Kyoto, Dec., 16, 2003 H. Katagiri, R. Enomoto, M. Mori, L. Ksenofontov Institute for cosmic.
Collaborators: Michael Muno (UCLA) Frederick Baganoff (MIT) Yoshitomo Maeda (ISAS) Mark Morris (UCLA) George Chartas (Penn State) Divas Sanwal (Penn State)
Particle acceleration in Supernova Remnants from X-ray observations Anne Decourchelle Service d’Astrophysique, CEA Saclay I- Ejecta dominated SNRs: Cas.
3D Crab Model and comparison with Chandra result Pulsar Wind Nebulae and Particle Acceleration in the Pulsar Magnetosphere Shibata, S., Tomatsuri, H.,
Observations of supernova remnants Anne Decourchelle Service d’Astrophysique, CEA Saclay I- Ejecta dominated SNRs: Cas A, Tycho and Kepler II- Synchrotron-dominated.
Search for Synchrotron X-ray Dominated SNRs with the ASCA Galactic Plane Survey Aya Bamba 1, Masaru Ueno 1, Katsuji Koyama 1, Shigeo Yamauchi 2, Ken Ebisawa.
Gilles Maurin – CEA Saclay - MODE10 - SNR session - November 2010 Geometry of acceleration in the bipolar remnant of SN1006 with XMM-Newton Gilles Maurin,
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
Non-thermal emission and particle acceleration by reverse shock in SNR ejecta Jiangtao Li
C. Y. Hui & W. Becker X-Ray Studies of the Central Compact Objects in Puppis-A & RX J Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse.
Barrel or Bilateral-shaped SNRs Jiangtao Li May 6th 2009.
Outline Cosmic Rays and Super-Nova Remnants
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
X-ray observation of the Cygnus Loop with Suzaku and XMM-Newton
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Shock-cloud interaction in the Vela SNR: the XMM-Newton view M. Miceli 1, F. Bocchino 2, A. Maggio 2, F. Reale 1 1.Dipartimento di Scienze Fisiche ed Astronomiche,
RGS observations of cool gas in cluster cores Jeremy Sanders Institute of Astronomy University of Cambridge A.C. Fabian, J. Peterson, S.W. Allen, R.G.
「すざく」 による超新星残骸 RCW86 の観測 Suzaku Observations of Supernova Remnant RCW86 山口 弘悦 (理研) Hiroya Yamaguchi (RIKEN) ← Preliminary image of the Suzaku mapping observation.
A New Window on Radio and X-ray emission from Strongly Interacting Supernovae Poonam Chandra Royal Military College of Canada Collaborators: Roger Chevalier,
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
Challenging the merger/sloshing cold front paradigm: A2142 revisited by XMM Mariachiara Rossetti (Università degli Studi di Milano & IASF Milano) D. Eckert,
The “youngest” Ia SNR in the Galaxy. The best to study early phase of Type Ia Cosmic Ray acceleration at the Shell The best to study the cosmic ray origin.
A smoothed hardness map of the hotspots of Cygnus A (right) reveals previously unknown structure around the hotspots in the form of outer and inner arcs.
FESR Consorzio COMETA - Progetto PI2S2 Supernova Remnants and Grid Computing at INAF-OAPa Marco Miceli Consorzio COMETA, INAF-OAPa.
PHYSICAL PROBLEMS INVOLVED
A large XMM-Newton project on SN 1006
A large XMM-Newton project on SN 1006
XMM-Newton Observation of the composite SNR G0. 9+0
Suzaku Observation of Tycho’s Supernova Remnant
Presentation transcript:

X-ray signature of shock modification in SN 1006 Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era July , Boston, USA Marco Miceli Università di Palermo, INAF - Osservatorio Astronomico di Palermo Collaborators: F. Bocchino, D. Iakubovskyi, S. Orlando, I. Telezhinsky, M. Kirsch, O. Petruk, G. Dubner, G. Castelletti Miceli et al. X-ray emission of SN 1006, Boston 2009

Introduction We study the rim of SN 1006 to study how particle acceleration affects the structure of the remnant. We focus both on thermal and non-thermal X-ray emission. Aims: Physical and chemical properties of the X-ray emitting plasma to find Tracer of shock-modification (distance BW-CD, post-shock T, etc.) Data:  XMM-Newton archive observations (7 obs. in , ~7-30 ks each)  VLA and single dish radio data to constrain the non-th. radio flux (VLA AB, BC and CD in ; Single dish Parkes in 2002 added; Synth. beam 7”.7x4”.8) Miceli et al. X-ray emission of SN 1006, Boston 2009

Spectral analysis We select 30 regions at the rim and adopt a unique model to explain different spectral properties in terms of azimuthal variations of best-fit parameters One thermal component in NEI + one non-thermal component (SRCUT) T e, , EM, abundances – NEI thermal component F 1 GHz, roll,  – non-thermal component (srcut, Reynolds 98) Miceli et al. X-ray emission of SN 1006, Boston 2009

What we do not see: the ISM Thermal component with oversolar abundances: we can detect the ejecta (see below), but where’s the shocked ISM? Is it too cold to emit X-rays? Or too tenous for the available statistics? If we add another thermal component to model the ISM emission the quality of the fit does not improve (even in “thermal” regions) and we have too many free parameters and useless results We cannot constrain signatures of shock modification in the thermodynamics of the post-shock ISM (low T, large n, etc.). Need for deeper observations (XMM LP, PI A. Decourchelle), see Gilles Mauren’s talk In literature the presence of ISM is controversial: Acero et al. (2007) find that at NW and SE (thermal regions) ISM is statistically not needed (if they include the SRCUT) and estimate kT ISM ~1.5 keV, while Yamaguchi et al estimate that at SE kT ISM ~0.5 keV Miceli et al. X-ray emission of SN 1006, Boston 2009

What we see: 1) synchrotron emission  Profile of break consistent with Rothenflug et al. (2003)   ~0.5 and values of break in agreement with Allen et al. (2008) S W N E Miceli et al. X-ray emission of SN 1006, Boston 2009

What we see: 2) ejecta We determine the abundances in two large thermal regions: NW and SE Anisotropies in T and abundances Miceli et al. X-ray emission of SN 1006, Boston 2009

What we see: 2) ejecta Ejecta EM drops down in non-thermal limbs! SW limb NE limb kT (keV)  PS (cm -3 s) EM (cm -5 pc) Miceli et al. X-ray emission of SN 1006, Boston 2009

Fraction of thermal flux in the keV band What we see: 2) ejecta Miceli et al. X-ray emission of SN 1006, Boston 2009

Pure thermal image  For each pixel we extrapolate the contribution of the non- thermal emission in the ( keV band) from the image in the keV band  The procedure relies only on the spectral results of the SRCUT component (robust and in agreement with those reported in literature Miceli et al. X-ray emission of SN 1006, Boston 2009

Pure thermal image SW limb NE limb Low values of EM in non-thermal limbs are naturally explained as volume effects Miceli et al. X-ray emission of SN 1006, Boston 2009

Pure thermal image – test e e 1 Emission measure per unit area (preliminary analysis performed on the new XMM-Newton LP data (PI A. Decourchelle) 0.032±0.002 cm -6 pc 0.003±0.002 cm -6 pc 0.014±0.002 cm -6 pc 0.001±0.001 cm -6 pc 0.009±0.003 cm -6 pc keV Thermal keV Total Miceli et al. X-ray emission of SN 1006, Boston 2009

Pure thermal image – test 3 Miceli et al. X-ray emission of SN 1006, Boston 2009

Blast wave – Contact Discontinuity Miceli et al. X-ray emission of SN 1006, Boston 2009 We determine the position of the blast wave shock from the keV image and from the H  map (Winkler et al. 2003). Same approach as Cassam-Chenai et al. (2008), but we use our thermal image in the keV band to determine the position of the contact discontinuity

Blast wave – Contact Discontinuity

Comparison with MHD models 3-D MHD model of non-modified SNR shock (see S. Orlando’s talk) Model parameters: ejecta shock front 3-D simulations can model the Richtmyer-Meshkov instabilities and the “fingers” of ejecta Miceli et al. X-ray emission of SN 1006, Boston 2009

Comparison with MHD models  5/3  4/3  1.1 The shock is modified everywhere. No lower ratios in non-thermal limbs: we do not observe regions with larger efficiency of the acceleration processes edge-on. Aspect angle < 90º Miceli et al. X-ray emission of SN 1006, Boston 2009

Conclusions  No X-ray emission from the ISM  Revised values of  and break  Inhomogeneities in the ejecta (temperature and abundances)  Pure thermal image of the ejecta  Azimuthal profile of BW/CD  Shock modified everywhere  Aspect angle < 90º (see F. Bocchino’s talk) Miceli et al. 2009, A&A, in press Miceli et al. X-ray emission of SN 1006, Boston 2009