NSTX XP818: ELM mitigation w/midplane coils - SAS S. A. Sabbagh, J-K. Park, T. Evans, S. Gerhardt, R. Maingi, J.E. Menard, many others… (joint ELM mitigation.

Slides:



Advertisements
Similar presentations
PPPL,NFRI Study of Error Field and 3D Plasma Response in KSTAR J.-K. Park 1, Y. M. Jeon 2, In collaboration with J. E. Menard 1, K. Kim 1, J. H. Kim 2,
Advertisements

Berkery – Kinetic Stabilization NSTX Jack Berkery Kinetic Effects on RWM Stabilization in NSTX: Initial Results Supported by Columbia U Comp-X General.
Study of tearing mode stability in the presence of external perturbed fields Experimental validation of MARS-K/Q and RDCON codes Z.R. Wang 1, J.-K. Park.
E D Fredrickson a, J Menard a, D. Stutman b, K. Tritz b a Princeton Plasma Physics Laboratory, NJ b Johns Hopkins University, MD 46 th Annual Meeting of.
NSTX-U T&T TSG Contributions to FY15 JRT NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
Use of 3D fields for ELM Pace-Making in NSTX Lithium Enhanced H-Modes PFC Community Meeting Cambridge, MA July 8-10, 2009 NSTX Supported by College W&M.
NSTX Status and Plans College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
NSTX XP830 review – J.W. Berkery J.W. Berkery, S.A. Sabbagh, H. Reimerdes Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL.
NSTX SAS – APS DPP ‘05 Supported by Office of Science S.A. Sabbagh 1, A.C. Sontag 1, W. Zhu 1, M.G. Bell 2, R. E. Bell 2, J. Bialek 1, D.A. Gates 2, A.
J. Manickam, C. Kessel and J. Menard Princeton Plasma Physics Laboratory Special thanks to R. Maingi, ORNL and S. Sabbagh, Columbia U. 45 th Annual Meeting.
J.R. Wilson, R.E. Bell, S. Bernabei, T. Biewer, J. C. Hosea, B. LeBlanc, M. Ono, C. K. Phillips Princeton Plasma Physics Laboratory P. Ryan, D.W Swain.
PCS Navigation D. Mueller January 26-28, 2010 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS.
XP1518: RWM PID control optimization based on theory and experiment S. A. Sabbagh, J.W. Berkery, J.M Bialek Y.S. Park, (et al…) Department of Applied Physics,
Non-axisymmetric Control Coil Upgrade and related ideas NSTX Supported by V1.0 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
Current status of high k scattering system J. Kim 1, Y. Ren 2, K-C. Lee 3 and R. Kaita 2 1) POSTECH 2) PPPL 3) UC Davis NSTX Monday Physics Meeting LSB-318,
1 Update on Run Schedule R. Raman NSTX Team Meeting PPPL, Princeton, NJ, 08 February, 2006 Work supported by DOE contract numbers DE-FG02-99ER54519 AM08,
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
Beam Ion Profiles with the SSNPA Diagnostic Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL.
NSTX IAEA FEC 2006 PD: S.A. Sabbagh 1 Supported by Office of Science S.A. Sabbagh 1, R. E. Bell 2, J.E. Menard 2, D.A. Gates 2, A.C. Sontag 1, J.M. Bialek.
Direct measurement of plasma response using Nyquist Contour Z.R. Wang 1, J.-K. Park 1, M. J. Lanctot 2, J. E. Menard 1,Y.Q. Liu 3, R. Nazikian 1 1 Princeton.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
ASC Five Year Plan Chapter Status Stefan Gerhardt NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu.
XP817: Transient CHI – Solenoid free Plasma Startup and Coupling to Induction Office of Science R. Raman, B.A. Nelson, D. Mueller, T.R. Jarboe, M.G. Bell.
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
NSTX WZ – XP524 - NSTX Results Review ‘05 Supported by Office of Science Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT.
Development of Improved Vertical Position Control S.P. Gerhardt, E. Kolemen ASC Session, NSTX 2011/12 Research Forum Location Date NSTX Supported by College.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle NSTX Run Usage 27 February – 5 May, 2006 NSTX Mid-Run Assessment PPPL, Princeton,
Energy Confinement Scaling in the Low Aspect Ratio National Spherical Torus Experiment (NSTX) S. M. Kaye, M.G. Bell, R.E. Bell, E.D. Fredrickson, B.P.
XP1020: Determination of Weak RWM Stability Rotation Profiles J.W. Berkery, S.A. Sabbagh, H. Reimerdes Department of Applied Physics, Columbia University,
NSTX Team Meeting February 7, 2007 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman XP Review - ASC Feb 2, 2009 NSTX Supported by College.
1 Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland.
NSTX S. A. Sabbagh 1, J. Bialek 1, A. Sontag 1, W. Zhu 1, B. LeBlanc 2, R. E. Bell 2, A. H. Glasser 3, L. L. Lao 4, J.E. Menard 2, M. Bell 2, T. Biewer.
MARS analysis of rotational stabilization of the RWM in NSTX & DIII-D AT plasmas Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
NSTX Team Meeting December 21, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
NSTX XP818: ELM mitigation w/midplane coils – SAS, JKP, RM, SG XP818: Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric.
NSTX XP1031: MHD/ELM stability vs. thermoelectric J, edge J, and collisionality -NSTX Physics Mtg. 6/28/10 - S.A. Sabbagh, et al. S.A. Sabbagh 1, T.E.
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
First results of fast IR camera diagnostic J-W. Ahn and R. Maingi ORNL NSTX Monday Physics Meeting LSB-318, PPPL June 22, 2009 NSTX Supported by College.
Tom Egebo PPPL Review of the NSTX TF Coil Repair Effort September 3 - 4, 2003 Cost & Schedule to Completion Supported by Columbia U Comp-X General Atomics.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
NSTX Team Meeting June 30, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
NSTX Sabbagh/Shaing S. A. Sabbagh 1, K.C. Shaing 2, et al. XP743: Island-induced neoclassical toroidal viscosity and dependence on i Supported by Columbia.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
1 Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
SMK – IAEA ‘041 Stanley M. Kaye for the NSTX Research Team PPPL, Princeton University, U.S.A. 20 th IAEA Fusion Energy Conference Vilamoura, Portugal November.
NSTX-U Disruption PAM Working Group – Controlled Shutdown XP Discussion S. A. Sabbagh and R. Raman Department of Applied Physics, Columbia University,
V. A. Soukhanovskii, NSTX FY2010 Results Review, Princeton, NJ 1 of 31 Boundary Physics Topical Science Group summary V. A. Soukhanovskii, TSG Leader Lawrence.
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
Presently Planned Vacuum-Side Diagnostics for the NSTX-Upgrade Center Column NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
XP-945: ELM Pacing via Vertical Position Jogs S.P. Gerhardt, J.M. Canik, D. Gates, R. Goldston, R. Hawryluk, R. Maingi, J. Menard, S. Sabbagh, A. Sontag.
NSTX Electron Bernstein Wave Research - Taylor 1 of 8 Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Preliminary Results from XP1020 RFA Measurements J.W. Berkery Department of Applied Physics, Columbia University, New York, NY, USA NSTX Monday Physics.
V. A. Soukhanovskii, XP1002 Review, 9 June 2010, Princeton, NJ 1 of 9 XP 1002: Core impurity density and P rad reduction using divertor condition modifications.
Advanced Scenario Development on NSTX D. A. Gates, PPPL For the NSTX Research Team 50th APS-DPP meeting Dallas, TX November 17, 2008 College W&M Colorado.
1 Status of the 2008 ASC TSG Run plan Presented by D. A. Gates (J. Menard Deputy) At the NSTX Mid-run asessment PPPL April 16, 2008 Supported by Office.
NSTX XP802 review - S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, S. Gerhardt 2, J.E. Menard 2, J.W. Berkery 1, J.M. Bialek 1, D.A. Gates 2, B. LeBlanc 2,
1 Roger Raman for the NSTX Research Team University of Washington, Seattle Update on the NSTX Run Plan PPPL, Princeton, NJ, 15 May, 2006 Supported by Office.
Monitoring impact of the LLD Adam McLean, ORNL T. Gray, R. Maingi Lithium, TSG group preliminary research forum PPPL, B252 Nov. 23, 2009 NSTX Supported.
NSTX XP1062 (NTV) team review: 9/16/10 - S.A. Sabbagh, et al. S.A. Sabbagh, R.E. Bell, J.W. Berkery, S.P. Gerhardt, J-K Park, et al. XP1062: NTV behavior.
XP-950: XP-950: Dependence of metallic impurity accumulation on I p and the outer gap in the presence of lithium deposition S. Paul, S. P. Gerhardt are.
NSTX S.A. Sabbagh S.A. Sabbagh 1, R.E. Bell 2, J.E. Menard 2, D.A. Gates 2, J.M. Bialek 1, B. LeBlanc 2, F. Levinton 3, K. Tritz 4, H. Yu 3 XP728: RWM.
Presentation transcript:

NSTX XP818: ELM mitigation w/midplane coils - SAS S. A. Sabbagh, J-K. Park, T. Evans, S. Gerhardt, R. Maingi, J.E. Menard, many others… (joint ELM mitigation team) XP818: ELM Mitigation with Midplane Control Coils Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland U New Mexico U Rochester U Washington U Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo JAERI Ioffe Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching U Quebec NSTX Team Review February 19, 2008 Princeton Plasma Physics Laboratory V1.3

NSTX XP818: ELM mitigation w/midplane coils - SAS Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric coils Goal  Demonstration of ELM mitigation with NSTX midplane RWM coil set Approach  Target development (i) low q 95 8  Application of DC fields (broader n spectrum, new 2008 capabilities) Past odd parity fields (n = 3, 1+3) operating on low q 95 target New even parity field (n = 2 (strong n = 4), 6) capability for 2008 New combined odd/even parity (present favorite n = 2 + 3)  Application of AC fields Using either/both odd and even parity fields; co/ctr propagation  ELM mitigation through effects on edge plasma profiles Feedback on n = 1  May be useful for giant ELMs, buildup detected by RWM B r sensors  Repeat techniques showing most potential in low recycling (post-LITER)

NSTX XP818: ELM mitigation w/midplane coils - SAS New non-axisymmetric field capability allows new combinations for ELM mitigation n = 2+3 field can produce Chirikov overlap near the plasma edge at reasonable SPA currents  Simulation: RWM coils (1-4) 0.5 kA, (2-6) 0.5 kA, (3-5) 1.5 kA J-K. Park Chirikov parameter

NSTX XP818: ELM mitigation w/midplane coils - SAS ELM mitigation by DC fields might be resonant effect DIII-D indicates narrow q window for ELM mitigation Should scan q 95 to insure that window is not missed

NSTX XP818: ELM mitigation w/midplane coils - SAS Planned mixed even/odd parity fields require non- diametrically-opposed coil pairs odd parity fields alone are standard anti-series connection even parity fields alone are “new” standard series connection 1 4 RWM coils

NSTX XP818: ELM mitigation w/midplane coils - SAS XP818 ELM Mitigation - Run plan Task Number of Shots 1) Create target plasmas A) Create q95 < 6 target: (generate at least 10 ELMs with approximately even spacing) (q95 ~ 5.5 is adequate) - Use shot as setup shot, (Ip = 0.8 MA, Bt = 0.5 T), change NBI source C to 1 MW unmodulated 2 - Raise Ip to 0.9 MA; change Bt to 0.45T, then 0.40T3 - If q95 > 6 and insufficient ELMs, perform startup optimizations as per J. Menard to raise qmin.(8) B) Create q95 ramp target - Start from low q95 target created in step (1A), Ip flat-top to 0.7 MA, ramping up to 1.0 MA; adjust eventual Ip flat-top if needed to create steady ELMs.4 - if plasma drops out of H-mode, start Ip ramp from 1.0 MA ramping to 0.7 MA(2) - vary Bt to change range of q ramp (optional)(2) C) Create q95 > 8 target - Use shot as setup shot, (Ip = 0.8 MA, Bt = 0.5 T), change NBI source C to 1 MW unmodulated - Drop Ip to 0.7 MA; tweak to 0.75 MA if desired2 2) Attempt ELM mitigation with non-axisymmetric fields under normal recycling conditions - DC fields: A) Apply n = 3 field configuration; vary amplitude from 1.5 kA4 B) Apply n = field configuration; vary amplitude from 1.0 kA, 0.5 kA4 C) Apply n = field configuration (start from RWM (1-4) 0.5kA, RWM (2,6) 0.5kA, RWM (3,5) 1.5 kA)4 D) Apply n = 2 field configuration; vary amplitude from 1.5 kA4 E) Apply n = 6 field configuration (primary field is n = 0); vary amplitude from 2.5 kA3 - AC fields (pre-programmed): F) Apply n = 3; vary f above/below ELM frequency; vary amplitude from 2.0 kA4 G) Apply n = 1 (co-propagating); vary f above/below ELM frequency; vary amplitude4 H) Apply n = 1 (ctr-propagating); vary f above/below ELM frequency; vary amplitude4 - AC fields (n = 1 feedback): I) n = 1 Br feedback: giant ELM target (e.g ), vary (i) gain (ii) phase6 3) Attempt ELM mitigation with non-axisymmetric fields under reduced recycling conditions16 Total (optional): 64 (12) V1.0

NSTX XP818: ELM mitigation w/midplane coils - SAS XP818 ELM Mitigation – first “1/2” day run plan Task Number of Shots 1) Create target plasmas A) Create q95 < 6 target: (generate at least 10 ELMs with approximately even spacing) (q95 ~ 5.5 is adequate) - Use shot as setup shot, (Ip = 0.8 MA, Bt = 0.5 T), change NBI source C to 1 MW unmodulated2 - Raise Ip to 0.9 MA; vary Bt to 0.45T, then 0.40T3 - If q95 > 6 and insufficient ELMs, perform startup optimization as per J. Menard to raise qmin. (8) B) Create q95 ramp target - Start from low q95 target created in step (1A), Ip flat-top to 0.7 MA, ramping up to 1.0 MA; adjust eventual Ip flat-top if needed to create steady ELMs.4 - If plasma drops out of H-mode, start Ip ramp from 1.0 MA ramping to 0.7 MA (2) - Vary Bt to change range of q ramp (optional) (2) 2) Attempt ELM mitigation with non-axisymmetric fields under normal recycling conditions - DC and AC fields: i) Apply DC n = 3 field configuration; vary amplitude from 1.5kA2 ii) Apply AC n = 3; vary f above/below ELM frequency; vary amplitude2 iii) Apply DC n = field configuration; vary amplitude from 1.5kA2 iv) Apply AC n = 1 (co-propagating); vary f above/below ELM frequency; vary amplitude2 (optionally include n = 3 based on results from (iii) above) Total (optional): 17 (12) V1.0