Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University.

Slides:



Advertisements
Similar presentations
Motion Planning for Point Robots CS 659 Kris Hauser.
Advertisements

NUS CS5247 Planning Motions with Intention Presented by: Yan Ke.
NUS CS5247 Motion Planning for Camera Movements in Virtual Environments By Dennis Nieuwenhuisen and Mark H. Overmars In Proc. IEEE Int. Conf. on Robotics.
By Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, Mark H. Overmars Emre Dirican
University of Amsterdam Search, Navigate, and Actuate - Quantitative Navigation Arnoud Visser 1 Search, Navigate, and Actuate Quantative Navigation.
Presented By: Aninoy Mahapatra
Probabilistic Roadmap
4/15/2017 Using Gaussian Process Regression for Efficient Motion Planning in Environments with Deformable Objects Barbara Frank, Cyrill Stachniss, Nichola.
DESIGN OF A GENERIC PATH PATH PLANNING SYSTEM AILAB Path Planning Workgroup.
Proximity Computations between Noisy Point Clouds using Robust Classification 1 Jia Pan, 2 Sachin Chitta, 1 Dinesh Manocha 1 UNC Chapel Hill 2 Willow Garage.
Multi-Robot Motion Planning Jur van den Berg. Outline Recap: Configuration Space for Single Robot Multiple Robots: Problem Definition Multiple Robots:
1 Last lecture  Configuration Space Free-Space and C-Space Obstacles Minkowski Sums.
A* and D* Search Kevin Tantisevi. Outline Overview of Search Techniques A* Search D* Search.
Autonomous Robot Navigation Panos Trahanias ΗΥ475 Fall 2007.
Presented by David Stavens. Manipulation Planning Before: Want to move the robot from one configuration to another, around obstacles. Now: Want to robot.
Motion Planning of Multi-Limbed Robots Subject to Equilibrium Constraints. Timothy Bretl Presented by Patrick Mihelich and Salik Syed.
1 Single Robot Motion Planning - II Liang-Jun Zhang COMP Sep 24, 2008.
Planning Motions with Intentions By Chris Montgomery A presentation on the paper Planning Motions with Intentions written by Yoshihito Koga, Koichi Kondo,
DAST, Spring © L. Joskowicz 1 Data Structures – LECTURE 1 Introduction Motivation: algorithms and abstract data types Easy problems, hard problems.
Planning Paths for Elastic Objects Under Manipulation Constraints Florent Lamiraux Lydia E. Kavraki Rice University Presented by: Michael Adams.
CS 326A: Motion Planning Jean-Claude Latombe CA: Aditya Mandayam.
Robotics R&N: ch 25 based on material from Jean- Claude Latombe, Daphne Koller, Stuart Russell.
CS 326 A: Motion Planning Instructor: Jean-Claude Latombe Teaching Assistant: Itay Lotan Computer Science.
CS 326 A: Motion Planning Manipulation Planning.
Presented By: Huy Nguyen Kevin Hufford
CS 326A: Motion Planning Kynodynamic Planning + Dealing with Moving Obstacles + Dealing with Uncertainty + Dealing with Real-Time Issues.
CS 326A: Motion Planning Basic Motion Planning for a Point Robot.
Chapter 5: Path Planning Hadi Moradi. Motivation Need to choose a path for the end effector that avoids collisions and singularities Collisions are easy.
Spring 2007 Motion Planning in Virtual Environments Dan Halperin Yesha Sivan TA: Alon Shalita Basics of Motion Planning (D.H.)
Integrated Grasp and Motion Planning For grasping an object in a cluttered environment several tasks need to take place: 1.Finding a collision free path.
CS 326 A: Motion Planning Coordination of Multiple Robots.
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces Kavraki, Svestka, Latombe, Overmars 1996 Presented by Chris Allocco.
1 Single Robot Motion Planning Liang-Jun Zhang COMP Sep 22, 2008.
A Randomized Approach to Robot Path Planning Based on Lazy Evaluation Robert Bohlin, Lydia E. Kavraki (2001) Presented by: Robbie Paolini.
Definition of an Industrial Robot
Construction and Motion control of a mobile robot using Visual Roadmap
Constraints-based Motion Planning for an Automatic, Flexible Laser Scanning Robotized Platform Th. Borangiu, A. Dogar, A. Dumitrache University Politehnica.
World space = physical space, contains robots and obstacles Configuration = set of independent parameters that characterizes the position of every point.
© Manfred Huber Autonomous Robots Robot Path Planning.
Robot Crowd Navigation using Predictive Position Fields in the Potential Function Framework Ninad Pradhan, Timothy Burg, and Stan Birchfield Electrical.
1 CO Games Development 1 Week 6 Introduction To Pathfinding + Crash and Turn + Breadth-first Search Gareth Bellaby.
Dana Nau: Lecture slides for Automated Planning Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:
Towards Cognitive Robotics Biointelligence Laboratory School of Computer Science and Engineering Seoul National University Christian.
Robotics Chapter 5 – Path and Trajectory Planning
1 Solving problems by searching This Lecture Chapters 3.1 to 3.4 Next Lecture Chapter 3.5 to 3.7 (Please read lecture topic material before and after each.
Path Planning for a Point Robot
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces (1996) L. Kavraki, P. Švestka, J.-C. Latombe, M. Overmars.
CS B659: Principles of Intelligent Robot Motion Configuration Space.
Motion Planning in Games Mark Overmars Utrecht University.
1 Distributed and Optimal Motion Planning for Multiple Mobile Robots Yi Guo and Lynne Parker Center for Engineering Science Advanced Research Computer.
yG7s#t=15 yG7s#t=15.
Aimée Vargas, Jyh-Ming Lien, Marco Morales and Nancy M. Amato Algorithms & Applications Group Parasol Lab, Dept. of Computer Science, Texas A&M University.
COMP322/S2000/L281 Task Planning Three types of planning: l Gross Motion Planning concerns objects being moved from point A to point B without problems,
Introduction to Motion Planning
UNC Chapel Hill M. C. Lin Introduction to Motion Planning Applications Overview of the Problem Basics – Planning for Point Robot –Visibility Graphs –Roadmap.
Contents  Teleoperated robotic systems  The effect of the communication delay on teleoperation  Data transfer rate control for teleoperation systems.
Randomized Kinodynamics Planning Steven M. LaVelle and James J
Planning Tracking Motions for an Intelligent Virtual Camera Tsai-Yen Li & Tzong-Hann Yu Presented by Chris Varma May 22, 2002.
Vision-Guided Humanoid Footstep Planning for Dynamic Environments P. Michel, J. Chestnutt, J. Kuffner, T. Kanade Carnegie Mellon University – Robotics.
Project by: Qi-Xing & Samir Menon. Motion Planning for the Human Hand Generate Hand Skeleton Define Configuration Space Sample Configuration Space for.
Toward humanoid manipulation in human-centered environments T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum, K. Welke, J. Schroder, R. Dillmann.
Real-Time Configuration Space Transforms for Obstacle Avoidance Wyatt S. Newman and Michael S. Branicky.
Vision-Guided Humanoid Footstep Planning for Dynamic Environments
On Multi-Arm Manipulation Planning
Liang Chen Advisor: Gagan Agrawal Computer Science & Engineering
Last lecture Configuration Space Free-Space and C-Space Obstacles
Presented By: Aninoy Mahapatra
Path Planning using Ant Colony Optimisation
Chapter 4 . Trajectory planning and Inverse kinematics
Stefan Oßwald, Philipp Karkowski, Maren Bennewitz
Presentation transcript:

Real-time motion planning for Manipulator based on Configuration Space Chen Keming Cis Peking University

Main Contents  Introduction  My current work  Future work and related work  C-Space visualization for Teleoperation

Introduction  Manipulator Motion Planning Problems – Statement: Compute a collision-free path for a manipulator among obstacles – Inputs: Geometry of manipulator and obstacles Kinematics of manipulator (degrees of freedom) Initial and goal manipulator configurations (placements) – Outputs: Continuous sequence of collision-free manipulator configurations connecting the initial and goal configurations

Introduction  Tool: Configuration Space

Introduction  Framework Manipulator representation Obstacles representation Configuration space formulation Discretization Graph searching

My Current Work  Motivation: Towards real-time Human-Robot Interaction in dynamic environment  Application – (Mobile based) Manipulator interacts with human without collision – Dual-arm robot (Chen Fen,Ding Fu-qiang and Zhao Xi-fang “ Collision-free Path Planning of dual-arm Robot. ” ROBOT,vol.24,Mar.2002)

My Current Work  Assumption – The input data are readily available at any time  Manipulator representation – Cylinders – Reduction to 3 joints  Obstacles representation – Cylinders – Combination of main body and arms

My Current Work  C-Space formulation – Reduction to determine whether 2 cylinders collide in 3D W-Space Case 1:Case 2:

My Current Work – Schematic

My Current Work – Goal configurations formulation using inverse kinematics  Discretization – Joint 1: 161, Joint 2: 71, Joint 3: 121

My Current Work  Lazy C-Space computation due to – Large numbers of points in C-Space(total 1,383,151 points) – Real-time process requirement  Graph searching (A*) – Why use A* Optimal and complete Objective values (expanding nodes, time)

My Current Work – Speed up A* OPEN is implemented as –hash table –priority list(implemented as Binary Heap) CLOSED is implemented as hash table List implementationHash table and Binary Heap implementation An example (collision checking points: more than 30000)

My Current Work  Result:

My Current Work  Dealing with dynamic environment – A* Replanner: Plan by A* using all the available information at the start. – Start tracing the optimal path – If there is a discrepancy between the initial map and the actual environment, update the new cost values for the corresponding arcs, run A* again for planning between the current position and the goal.

My Current Work  A* Replanner: shortcoming – If the goal configuration is far away, little changes may force the planner to use A* over the whole C-Space, although the changes in the optimal path may be small – Hence, A* replanner can be grossly inefficient computationally for real-time process

My Current Work  Optimization --- Dynamic A*(D*) [Stentz, 1994] – Functionally equivalent to A* replanner – Make “local” changes to the map and the resultant optimal path when a discrepancy between map and the environment is found Essentially prunes the graph search – So, D* could be a proper choice for optimization. But so far, it has only been used in mobile robotics to move a robot to given goal coordinates in unknown terrain [Koenig, 2002].

D* Algorithm c(x1,x2)=1 c(x1,x3)=1.4 c(x1,x8)=10000,if x8 is in obstacle,x1 is a freecell c(x1,x9)= , if x9 is in obstacle, x1 is a freecell x9x2x3 x8x1x5 x7x6x7

6 h=6 k=6 b= h=5 k=5 b= h=4 k=4 b= h=3 k=3 b= h=2 k=2 b= h=1 k=1 b= h=0 k=0 b= 5 h=6.4 k=6.4 b= h=5.4 k=5.4 b= h=4.4 k=4.4 b= h=3.4 k=3.4 b= h=2.4 k=2.4 b= h=1.4 k=1.4 b= h=1 k=1 b= 4 h=6.8 k=6.8 b= h=5.8 k=5.8 b= h=4.8 k=4.8 b= h=3.8 k=3.8 b= h=2.8 k=2.8 b= h=2.4 k=2.4 b= h=2 k=2 b= 3 h=7.2 k=7.2 b= h=6.2 k=6.2 b= h=5.2 k=5.2 b= h=4.2 k=4.2 b= h=3.8 k=3.8 b= h=3.4 k=3.4 b= h=3 k=3 b= 2 h=7.6 k=7.6 b= h=6.6 k=6.6 b= h=5.6 k=5.6 b= h=5.2 k=5.2 b= h=4.8 k=4.8 b= h=4.4 k=4.4 b= h=4 k=4 b= 1 h=8.0 k=8.0 b= h=7.0 k=7.0 b= h=6.6 k=6.6 b= h=6.2 k=6.2 b= h=5.8 k=5.8 b= h=5.4 k=5.4 b= h=5 k=5 B= r/c Goal Start Gate

6 h=6 k=6 b= h=5 k=5 b= h=4 k=4 b= h=3 k=3 b= h=2 k=2 b= h=1 k=1 b= h=0 k=0 b= 5 h=6.4 k=6.4 b= h=5.4 k=5.4 b= h=4.4 k=4.4 b= h=3.4 k=3.4 b= h=2.4 k=2.4 b= h=1.4 k=1.4 b= h=1 k=1 b= 4 h=6.8 k=6.8 b= h=5.8 k=5.8 b= h=4.8 k=4.8 b= h=3.8 k=3.8 b= h=2.8 k=2.8 b= h=2.4 k=2.4 b= h=2 k=2 b= 3 h=7.2 k=7.2 b= h=6.2 k=6.2 b= h=5.2 k=5.2 b= h=4.2 k=4.2 b= h=3.8 k=3.8 b= h=3.4 k=3.4 b= h=3 k=3 b= 2 h=7.6 k=7.6 b= h=6.6 k=6.6 b= h=5.6 k=5.6 b= h=5.2 k=5.2 b= h=4.8 k=4.8 b= h=4.4 k=4.4 b= h=4 k=4 b= 1 h=8.0 k=8.0 b= h=7.0 k=7.0 b= h=6.6 k=6.6 b= h=6.2 k=6.2 b= h=5.8 k=5.8 b= h=5.4 k=5.4 b= h=5 k=5 b= r/c (7,6)0 Statek

6 h=6 k=6 b= h=5 k=5 b= h=4 k=4 b= h=3 k=3 b= h=2 k=2 b= h=1 k=1 b=(7,6) h=0 k=0 b= 5 h=6.4 k=6.4 b= h=5.4 k=5.4 b= h=4.4 k=4.4 b= h=3.4 k=3.4 b= h=2.4 k=2.4 b= h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h=6.8 k=6.8 b= h=5.8 k=5.8 b= h=4.8 k=4.8 b= h=3.8 k=3.8 b= h=2.8 k=2.8 b= h=2.4 k=2.4 b= h=2 k=2 b= 3 h=7.2 k=7.2 b= h=6.2 k=6.2 b= h=5.2 k=5.2 b= h=4.2 k=4.2 b= h=3.8 k=3.8 b= h=3.4 k=3.4 b= h=3 k=3 b= 2 h=7.6 k=7.6 b= h=6.6 k=6.6 b= h=5.6 k=5.6 b= h=5.2 k=5.2 b= h=4.8 k=4.8 b= h=4.4 k=4.4 b= h=4 k=4 b= 1 h=8.0 k=8.0 b= h=7.0 k=7.0 b= h=6.6 k=6.6 b= h=6.2 k=6.2 b= h=5.8 k=5.8 b= h=5.4 k=5.4 b= h=5 k=5 b= r/c (6,6)1 (7,5)1 (6,5)1.4 Statek

6 h=6 k=6 b= h=5 k=5 b= h=4 k=4 b= h=3 k=3 b= h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h=6.4 k=6.4 b= h=5.4 k=5.4 b= h=4.4 k=4.4 b= h=3.4 k=3.4 b= h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h=6.8 k=6.8 b= h=5.8 k=5.8 b= h=4.8 k=4.8 b= h=3.8 k=3.8 b= h=2.8 k=2.8 b= h=2.4 k=2.4 b= h=2 k=2 b= 3 h=7.2 k=7.2 b= h=6.2 k=6.2 b= h=5.2 k=5.2 b= h=4.2 k=4.2 b= h=3.8 k=3.8 b= h=3.4 k=3.4 b= h=3 k=3 b= 2 h=7.6 k=7.6 b= h=6.6 k=6.6 b= h=5.6 k=5.6 b= h=5.2 k=5.3 b= h=4.8 k=4.8 b= h=4.4 k=4.4 b= h=4 k=4 b= 1 h=8.0 k=8.0 b= h=7.0 k=7.0 b= h=6.6 k=6.6 b= h=6.2 k=6.2 b= h=5.8 k=5.8 b= h=5.4 k=5.4 b= h=5 k=5 b= r/c (7,5)1 (6,5)1.4 (5,6)2 (5,5)2.4 Statek

6 h=6 k=6 b(1,6)= h=5 k=5 b= h=4 k=4 b= h=3 k=3 b= h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h=6.4 k=6.4 b(1,5)= h=5.4 k=5.4 b= h=4.4 k=4.4 b= h=3.4 k=3.4 b= h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h=6.8 k=6.8 b(1,4)= h=5.8 k=5.8 b= h=4.8 k=4.8 b= h=3.8 k=3.8 b= h=2.8 k=2.8 b= h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=7.2 k=7.2 b(1,3)= h=6.2 k=6.2 b= h=5.2 k=5.2 b= h=4.2 k=4.2 b= h=3.8 k=3.8 b= h=3.4 k=3.4 b= h=3 k=3 b= 2 h=7.6 k=7.6 b(1,2)= h=6.6 k=6.6 b= h=5.6 k=5.6 b= h=5.2 k= b= h=4.8 k=4.8 b= h=4.4 k=4.4 b= h=4 k=4 b= 1 h=8.0 k=8.0 b(1,1)= h=7.0 k=7.0 b= h=6.6 k=6.6 b= h=6.2 k=6.2 b= h=5.8 k=5.8 b= h=5.4 k=5.4 b= h=5 k=5 b= r/c (6,5)1.4 (5,6)2 (7,4)2 (6,4)2.4 (5,5)2.4 Statek

6 h=6 k=6 b(1,6)= h=5 k= b= h=10003 k=4 b=(4,6) h=3 k=3 b=(5,6) h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h=6.4 k=6.4 b(1,5)= h=5.4 k= b= h= k=4.4 b=(4,6) h=3.4 k=3.4 b=(5,6) h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h=6.8 k=6.8 b(1,4)= h=5.8 k= b= h=4.8 k= b= h=3.8 k=3.8 b=(5,5) h=2.8 k=2.8 b=(6,5) h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=7.2 k=7.2 b(1,3)= h=6.2 k= b= h=5.2 k= b= h=4.2 k=4.2 b=(5,4) h=3.8 k=3.8 b=(6,4) h=3.4 k=3.4 b=(7,4) h=3 k=3 b=(7,4) 2 h=7.6 k=7.6 b(1,2)= h=6.6 k=6.6 b= h=5.6 k=5.6 b= h=5.2 k=5.2 b= h=4.8 k=4.8 b= h=4.4 k=4.4 b= h=4 k=4 b= 1 h=8.0 k=8.0 b(1,1)= h=7.0 k=7.0 b= h=6.6 k=6.6 b= h=6.2 k=6.2 b= h=5.8 k=5.8 b= h=5.4 k=5.4 b= h=5 k=5 b= r/c (7,3)3 (6,3)3.4 (4,5)3.4 (5,3)3.8 (4,4)3.8 (3,6)4 (4,3)4.2 (3,5)4.4 Statek

6 h=20004 k=6 b=(2,6) h=10004 k=5 b=(3,6) h=10003 k=4 b=(4,6) h=3 k=3 b=(5,6) h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h= k=6.4 b=(2,6) h= k=5.4 b=(3,6) h= k=4.4 b=(4,6) h=3.4 k=3.4 b=(5,6) h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h= k=6.8 b=(2,5) h= k=5.8 b=(3,5) h= k= b=(4,5) h=3.8 k=3.8 b=(5,5) h=2.8 k=2.8 b=(6,5) h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=8.0 k=8.0 b=(2,2) h= k=6.2 b=(3,4) h= k=5.2 b=(4,4) h=4.2 k=4.2 b=(5,4) h=3.8 k=3.8 b=(6,4) h=3.4 k=3.4 b=(7,4) h=3 k=3 b=(7,4) 2 h=7.6 k=7.6 b=(2,2) h=6.6 k=6.6 b=(3,2) h=5.6 k=5.6 b=(4.3) h= k=5.2 b=(5,3) h=4.8 k=4.8 b=(6,3) h=4.4 k=4.4 b=(7,3) h=4 k=4 b=(7,3) 1 h=8.0 k=8.0 b=(2,2) h=7.0 k=7.0 b=(3,2) h=6.6 k=6.6 b=(3,2) h=6.2 k=6.2 b=(5,2) h=5.8 k=5.8 b=(6,2) h=5.4 k=5.4 b=(7,2) h=5 k=5 b=(7,2) r/c (1,6)6 (1,5)6.4 (1,4)6.8 (1,2)7.6 (1,3)8.0 (1,1)8.0 Statek

6 h=20004 k=6 b=(2,6) h=10004 k=5 b=(3,6) h=10003 k=4 b=(4,6) h=3 k=3 b=(5,6) h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h= k=6.4 b=(2,6) h= k=5.4 b=(3,6) h= k=4.4 b=(4,6) h=3.4 k=3.4 b=(5,6) h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h= k=6.8 b=(2,5) h= k=5.8 b=(3,5) h= k=4.8 b=(4,5) h=3.8 k=3.8 b=(5,5) h=2.8 k=2.8 b=(6,5) h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=8.0 k=8.0 b=(2,2) h= k=6.2 b=(3,4) h= k=5.2 b=(4,4) h=4.2 k=4.2 b=(5,4) h=3.8 k=3.8 b=(6,4) h=3.4 k=3.4 b=(7,4) h=3 k=3 b=(7,4) 2 h=7.6 k=7.6 b=(2,2) h=6.6 k=6.6 b=(3,2) h=5.6 k=5.6 b=(4.3) h= k=5.2 b h=4.8 k=4.8 b=(6,3) h=4.4 k=4.4 b=(7,3) h=4 k=4 b=(7,3) 1 h=8.0 k=8.0 b=(2,2) h=7.0 k=7.0 b=(3,2) h=6.6 k=6.6 b=(3,2) h=6.2 k=6.2 b=(5,2) h=5.8 k=5.8 b=(6,2) h=5.4 k=5.4 b=(7,2) h=5 k=5 b=(7,2) r/c (1,6)6 (1,5)6.4 (1,4)6.8 (1,2)7.6 (1,3)8.0 (1,1)8.0 Statek

6 h=20004 k=6 b=(2,6) h=10004 k=5 b=(3,6) h=10003 k=4 b=(4,6) h=3 k=3 b=(5,6) h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h= k=6.4 b=(2,6) h= k=5.4 b=(3,6) h= k=4.4 b=(4,6) h=3.4 k=3.4 b=(5,6) h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h= k=6.8 b=(2,5) h= k=5.8 b=(3,5) h= k=4.8 b=(4,5) h=3.8 k=3.8 b=(5,5) h=2.8 k=2.8 b=(6,5) h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=8.0 k=8.0 b=(2,2) h= k=6.2 b=(3,4) h= k=5.2 b=(4,4) h=4.2 k=4.2 b=(5,4) h=3.8 k=3.8 b=(6,4) h=3.4 k=3.4 b=(7,4) h=3 k=3 b 2 h=7.6 k=7.6 b=(2,2) h=6.6 k=6.6 b=(3,2) h=5.6 k=5.6 b=(4.3) h= k=5.2 b=(5,3) h=4.8 k=4.8 b=(6,3) h=4.4 k=4.4 b=(7,3) h=4 k=4 b=(7,3) 1 h=8.0 k=8.0 b=(2,2) h=7.0 k=7.0 b=(3,2) h=6.6 k=6.6 b=(3,2) h=6.2 k=6.2 b=(5,2) h=5.8 k=5.8 b=(6,2) h=5.4 k=5.4 b=(7,2) h=5 k=5 b=(7,2) r/c (1,6)6 (1,5)6.4 (1,4)6.8 (1,2)7.6 (1,3)8.0 (1,1)8.0 Statek

(4,3)4.2 (1,6)6 (1,5)6.4 (1,4)6.8 (1,2)7.6 (1,3)8.0 (1,1)8.0 Statek 6 h=20004 k=6 b=(2,6) h=10004 k=5 b=(3,6) h=10003 k=4 b=(4,6) h=3 k=3 b=(5,6) h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h= k=6.4 b=(2,6) h= k=5.4 b=(3,6) h= k=4.4 b=(4,6) h=3.4 k=3.4 b=(5,6) h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h= k=6.8 b=(2,5) h= k=5.8 b=(3,5) h= k=4.8 b=(4,5) h=3.8 k=3.8 b=(5,5) h=2.8 k=2.8 b=(6,5) h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=8.0 k=8.0 b=(2,2) h= k=6.2 b h= k=5.2 b=(4,4) h=4.2 k=4.2 b=(5,4) h=3.8 k=3.8 b=(6,4) h=3.4 k=3.4 b=(7,4) h=3 k=3 b=(7,4) 2 h=7.6 k=7.6 b=(2,2) h=6.6 k=6.6 b=(3,2) h=5.6 k=5.6 b=(4.3) h= k=5.2 b=(5,3) h=4.8 k=4.8 b=(6,3) h=4.4 k=4.4 b=(7,3) h=4 k=4 b=(7,3) 1 h=8.0 k=8.0 b=(2,2) h=7.0 k=7.0 b=(3,2) h=6.6 k=6.6 b=(3,2) h=6.2 k=6.2 b=(5,2) h=5.8 k=5.8 b=(6,2) h=5.4 k=5.4 b=(7,2) h=5 k=5 b=(7,2) r/c

6 h=20004 k=6 b=(2,6) h=10004 k=5 b h=10003 k=4 b h=3 k=3 b=(5,6) h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h= k=6.4 b=(2,6) h= k=5.4 b=(3,6) h= k=4.4 b=(4,6) h=3.4 k=3.4 b=(5,6) h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h= k=6.8 b=(2,5) h= k=5.8 b=(3,5) h= k=4.8 b=(4,5) h=3.8 k=3.8 b=(5,5) h=2.8 k=2.8 b=(6,5) h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=8.0 k=8.0 b=(2,2) h= k=6.2 b=(3,4) h= k=5.2 b=(4,4) h=4.2 k=4.2 b=(5,4) h=3.8 k=3.8 b=(6,4) h=3.4 k=3.4 b=(7,4) h=3 k=3 b=(7,4) 2 h=7.6 k=7.6 b=(2,2) h=6.6 k=6.6 b=(3,2) h= k=5.6 b=(4.3) h= k=5.2 b=(5,3) h=4.8 k=4.8 b=(6,3) h=4.4 k=4.4 b=(7,3) h=4 k=4 b=(7,3) 1 h=8.0 k=8.0 b=(2,2) h=7.0 k=7.0 b=(3,2) h=6.6 k=6.6 b=(3,2) h=6.2 k=6.2 b=(5,2) h=5.8 k=5.8 b=(6,2) h=5.4 k=5.4 b=(7,2) h=5 k=5 b=(7,2) r/c (3,2)5.6 (1,6)6 (1,5)6.4 (1,4)6.8 (1,2)7.6 (1,3)8.0 (1,1)8.0 Statek

6 h=20004 k=6 b=(2,6) h=10004 k=5 b h=10003 k=4 b=(4,6) h=3 k=3 b=(5,6) h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h= k=6.4 b=(2,6) h= k=5.4 b=(3,6) h= k=4.4 b=(4,6) h=3.4 k=3.4 b=(5,6) h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h= k=6.8 b=(2,5) h= k=5.8 b=(3,5) h= k=4.8 b=(4,5) h=3.8 k=3.8 b=(5,5) h=2.8 k=2.8 b=(6,5) h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=8.0 k=8.0 b=(2,2) h= k=6.2 b=(3,4) h= k=5.2 b=(4,4) h=4.2 k=4.2 b=(5,4) h=3.8 k=3.8 b=(6,4) h=3.4 k=3.4 b=(7,4) h=3 k=3 b=(7,4) 2 h=7.6 k=7.6 b=(2,2) h= k=6.6 b=(3,2) h= k=5.6 b=(4.3) h= k=5.2 b=(5,3) h=4.8 k=4.8 b=(6,3) h=4.4 k=4.4 b=(7,3) h=4 k=4 b=(7,3) 1 h=8.0 k=8.0 b=(2,2) h= k=7.0 b=(3,2) h= k=6.6 b=(3,2) h=6.2 k=6.2 b=(5,2) h=5.8 k=5.8 b=(6,2) h=5.4 k=5.4 b=(7,2) h=5 k=5 b=(7,2) r/c (1,6)6 (4,1)6.2 (1,5)6.4 (3,1)6.6 (2,2)6.6 (1,4)6.8 (2,1)7.0 (1,2)7.6 (1,3)8.0 (1,1)8.0 Statek

6 h=20004 k=6 b=(2,6) h=10004 k=5 b h=10003 k=4 b=(4,6) h=3 k=3 b=(5,6) h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h= k=6.4 b=(2,6) h= k=5.4 b=(3,6) h= k=4.4 b=(4,6) h=3.4 k=3.4 b=(5,6) h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h= k=6.8 b=(2,5) h= k=5.8 b=(3,5) h= k=4.8 b=(4,5) h=3.8 k=3.8 b=(5,5) h=2.8 k=2.8 b=(6,5) h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=8.0 k=8.0 b=(2,2) h= k=6.2 b=(3,4) h= k=5.2 b=(4,4) h=4.2 k=4.2 b=(5,4) h=3.8 k=3.8 b=(6,4) h=3.4 k=3.4 b=(7,4) h=3 k=3 b=(7,4) 2 h=7.6 k=7.6 b=(2,2) h= k=6.6 b=(3,2) h= k=5.6 b=(4.3) h= k=5.2 b=(5,3) h=4.8 k=4.8 b=(6,3) h=4.4 k=4.4 b=(7,3) h=4 k=4 b=(7,3) 1 h=8.0 k=8.0 b=(2,2) h= k=7.0 b=(3,2) h= k=6.6 b=(3,2) h=6.2 k=6.2 b=(5,2) h=5.8 k=5.8 b=(6,2) h=5.4 k=5.4 b=(7,2) h=5 k=5 b=(7,2) r/c (1,6)6 (4,1)6.2 (1,5)6.4 (3,1)6.6 (2,2)6.6 (1,4)6.8 (2,1)7.0 (1,2)7.6 (1,3)8.0 (1,1)8.0 Statek

6 h=20004 k=6 b=(2,6) h=10004 k=5 b=(3,6) h=10003 k=4 b=(4,6) h=3 k=3 b=(5,6) h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h= k=6.4 b=(2,6) h= k=5.4 b=(3,6) h= k=4.4 b=(4,6) h=3.4 k=3.4 b=(5,6) h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h= k=6.8 b=(2,5) h= k=5.8 b)=(3,5) h= k=4.8 b=(4,5) h=3.8 k=3.8 b=(5,5) h=2.8 k=2.8 b=(6,5) h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=8.0 k=8.0 b=(2,2) h= k=6.2 b=(3,4) h= k=5.2 b=(4,4) h=4.2 k=4.2 b=(5,4) h=3.8 k=3.8 b=(6,4) h=3.4 k=3.4 b=(7,4) h=3 k=3 b=(7,4) 2 h=7.6 k=7.6 b=(2,2) h= k=6.6 b=(3,2) h= k=5.6 b=(4.3) h= k=5.2 b=(5,3) h=4.8 k=4.8 b=(6,3) h=4.4 k=4.4 b=(7,3) h=4 k=4 b=(7,3) 1 h=8.0 k=8.0 b=(2,2) h= k=7.0 b=(3,2) h= k=6.6 b=(3,2) h=6.2 k=6.2 b=(5,2) h=5.8 k=5.8 b=(6,2) h=5.4 k=5.4 b=(7,2) h=5 k=5 b=(7,2) r/c (4,1)6.2 (1,5)6.4 (3,1)6.6 (2,2)6.6 (1,4)6.8 (2,1)7.0 (1,2)7.6 (1,3)8.0 (1,1)8.0 Statek

6 h=20004 k=6 b=(2,6) h=10004 k=5 b=(3,6) h=10003 k=4 b=(4,6) h=3 k=3 b=(5,6) h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h= k=6.4 b=(2,6) h= k=5.4 b=(3,6) h= k=4.4 b=(4,6) h=3.4 k=3.4 b=(5,6) h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h= k=6.8 b=(2,5) h= k=5.8 b=(3,5) h= k=4.8 b=(4,5) h=3.8 k=3.8 b=(5,5) h=2.8 k=2.8 b=(6,5) h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=8.0 k=8.0 b=(2,2) h= k=6.2 b=(3,4) h= k=5.2 b=(4,4) h=4.2 k=4.2 b=(5,4) h=3.8 k=3.8 b=(6,4) h=3.4 k=3.4 b=(7,4) h=3 k=3 b=(7,4) 2 h=7.6 k=7.6 b=(2,2) h= k=6.6 b=(3,2) h=7.6 k=7.6 b=(4.1) h= k=5.2 b=(5,3) h=4.8 k=4.8 b=(6,3) h=4.4 k=4.4 b=(7,3) h=4 k=4 b=(7,3) 1 h=8.0 k=8.0 b=(2,2) h= k=7.0 b=(3,2) h=7.2 k=7.2 b=(4,1) h=6.2 k=6.2 b=(5,2) h=5.8 k=5.8 b=(6,2) h=5.4 k=5.4 b=(7,2) h=5 k=5 b=(7,2) r/c (5,2)4.8 (5,1)5.8 (3,2)5.6 (1,5)6.4 (3,1)6.6 (2,2)6.6 (1,4)6.8 (2,1)7.0 (1,2)7.6 (1,3)8.0 (1,1)8.0 Statek

6 h=20004 k=6 b=(2,6) h=10004 k=5 b=(3,6) h=10003 k=4 b=(4,6) h=3 k=3 b=(5,6) h=2 k=2 b=(6,6) h=1 k=1 b=(7,6) h=0 k=0 b= 5 h= k=6.4 b=(2,6) h= k=5.4 b=(3,6) h= k=4.4 b=(4,6) h=3.4 k=3.4 b=(5,6) h=2.4 k=2.4 b=(6,6) h=1.4 k=1.4 b=(7,6) h=1 k=1 b=(7,6) 4 h= k=6.8 b=(2,5) h= k=5.8 b=(3,5) h= k=4.8 b=(4,5) h=3.8 k=3.8 b=(5,5) h=2.8 k=2.8 b=(6,5) h=2.4 k=2.4 b=(7,5) h=2 k=2 b=(7,5) 3 h=8.0 k=8.0 b=(2,2) h= k=6.2 b=(3,4) h= k=5.2 b=(4,4) h=4.2 k=4.2 b=(5,4) h=3.8 k=3.8 b=(6,4) h=3.4 k=3.4 b=(7,4) h=3 k=3 b=(7,4) 2 h=7.6 k=7.6 b=(2,2) h= k=6.6 b=(3,2) h=7.6 k=7.6 b=(4.1) h= k=5.2 b=(5,3) h=4.8 k=4.8 b=(6,3) h=4.4 k=4.4 b=(7,3) h=4 k=4 b=(7,3) 1 h=8.0 k=8.0 b=(2,2) h= k=7.0 b=(3,2) h=7.2 k=7.2 b=(4,1) h=6.2 k=6.2 b=(5,2) h=5.8 k=5.8 b=(6,2) h=5.4 k=5.4 b=(7,2) h=5 k=5 b=(7,2) r/c

Exam 1

Exam 2

My Current Work  Compared with A* replanner in our problem, D* performance superior over A* replanner Checking points per replanning

Future work and related work  Modify program, make it more robust with more experiments, speed up with more modifications.  D* Limitation – D* search from goal configuration, what if there are several goal configurations (it’s common in manipulator motion planning)? – When the goal object is moving – Current on-line planning methods using A* based techniques focus on multi-directional search and parallel planning ( [Dominik HENRICH, Christian WURLL and Heinz WÖRN, 1998], etc ) – D* should be adapted for our problems

Future work and related work – Consult other D*-like replanning algorithms (e.g D* Lite [Koenig, 2002] )  Survey other real-time motion planning techniques in high dimensional C-Space – Decomposition-based methods ( [Kavraki, 2001], [Mediavilla, 2002], etc ) – Probabilistic roadmap based methods(most deal with static environment)

Future work and related work  Use a more general 3D model to represent manipulator and obstacles – Hierarchy structure – Tree structure

Future work and related work – Taxonomy

Future work and related work  Experiment using real robot arm: a challenging work Images from cameras Model parameters Computer vision techniques Motion planning

C-Space Visualization for Teleoperation  Applications of C-Space Visualization – Provide important qualitative information for mechanical design (E.Sacks, C.Pisula and L.Joskowicz “ Visualizing 3D Configuration Spaces for Mechanical Design. ” ). – Evaluation of path planning methods – Teleoperation (I.Ivanisevic and J.Lumelsky “ Configuration Space as a Means for Augmenting Human Performance in Teleoperation Tasks. ” IEEE Trans.Syst.Man,Cyber.,vol.30,pp ,Jun.2000).

C-Space Visualization for Teleoperation  It’s easier for humans to handle motion planning problems in C-Space than in W-Space

C-Space Visualization for Teleoperation  Challenges – When the computer which generates C-Space data is not the same as the computer which receives humans input, C-Space data must be transfered through network – C-Space data are too large 161*71*121 for my current implementation – C-Space data change caused by dynamic environment, etc – Poor network bandwidth

C-Space Visualization for Teleoperation  So, C-Space data compression is necessary  Additional work C-Space for a Cylinder Object C-Space Data 3D Models Data 3D Model Data Compression Framework :