Gamma-Rays and UHE Cosmic Rays from Clusters of Galaxies Susumu Inoue (Nat. Astron. Obs. Japan) and collaborators GeV 100 keV HESS Auger GLAST Suzaku ZeV.

Slides:



Advertisements
Similar presentations
Many different acceleration mechanisms: Fermi 1, Fermi 2, shear,... (Fermi acceleration at shock: most standard, nice powerlaw, few free parameters) main.
Advertisements

The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
Gamma-Ray Bursts & High Energy Astrophysics Kunihito Ioka (KEK) 井岡 邦仁.
Blazar Gamma-ray absorption by cosmic radiation fields GRB Fermi z~60-6 CTA Susumu Inoue (Kyoto University) with (more than) a little help from my friends.
Origin of Ultra High Energy Cosmic Rays Susumu Inoue (NAOJ) AGNs GRBs clusters astro-ph/ (brief review) collaborators: G. Sigl (APC), F. Miniati.
Upper Limit on the Cosmological  - Ray Background Yoshiyuki Inoue (Stanford) Kunihito Ioka (KEK) 1.
Nuclei As Ultra High Energy Cosmic Rays Oleg Kalashev* UCLA, INR RAS GZK 40: The 3rd International Workshop on THE HIGHEST ENERGY COSMIC RAYS AND THEIR.
Luigina Feretti Istituto di Radioastronomia CNR Bologna, Italy Radio observations of cluster mergers X-Ray and Radio Connections, Santa Fe, NM February.
Radio halos and relics in galaxy clusters. NGC315: giant (~ 1.3 Mpc) radio galaxy with odd radio lobe (Mack 1996; Mack et al. 1998). precessing jets (Bridle.
Hamburg, 18 September 2008 LOFAR Wokshop1/44 Thermal and non-thermal emission from galaxy clusters: X-ray and LOFAR observations Chiara Ferrari Observatoire.
What can we learn from the GZK feature? Angela V. Olinto Astronomy & Astrophysics Kavli Institute Cosmol.Phys. Enrico Fermi Institute University of Chicago.
Non-Thermal Radiation from Intergalactic Shocks Uri Keshet 1, Eli Waxman 1, Abraham Loeb 2, Volker Springel 3, and Lars Hernquist 2 1) Weizmann Institute.
ANITA Meeting UC Irvine 23 November 2002 EHE Cosmic Rays, EHE Neutrinos and GeV- TeV Gamma rays David Kieda University of Utah Department of Physics.
Radio Quiet AGNs as possible sources of UHECRs Based on work by Asaf Pe’er (STScI), Kohta Murase (Yukawa Inst.) & Peter Mészáros (PSU) October 2009 Phys.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
07/05/2003 Valencia1 The Ultra-High Energy Cosmic Rays Introduction Data Acceleration and propagation Numerical Simulations (Results) Conclusions Isola.
Cosmological MHD Hui Li Collaborators: S. Li, M. Nakamura, S. Diehl, B. Oshea, P. Kronberg, S. Colgate (LANL) H. Xu, M. Norman (UCSD), R. Cen (Princeton)
What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Hard X-Rays & Gamma-Rays Induced by Ultra High Energy Proton Acceleration in Cluster Accretion Shocks Susumu Inoue Felix Aharonian Naoshi Sugiyama (NAO.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
Accelerators in the KEK, Tsukuba Mar. 14, Towards unravelling the structural distribution of ultra-high-energy cosmic ray sources Hajime.
Molecular clouds and gamma rays
銀河団における超高エネルギー物理過程 w. Felix Aharonian (MPIK), 杉山直 ( 国立天文台 ) 井上 進 ( 国立天文台 ) w. Günter Sigl, Eric Armengaud (IAP) Francesco Miniati (ETH) ZeV GeV TeV 100.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The TeV view of the Galactic Centre R. Terrier APC.
TeV Particle Astrophysics II 1 Are there EHE signals? Shigeru Yoshida.
18 May, 2006KAW4, Daejeon1 Astrophysical Sources of UHECRs Tom Jones University of Minnesota.
Summary(3) -- Dynamics in the universe -- T. Ohashi (Tokyo Metropolitan U) 1.Instrumentation for dynamics 2.Cluster hard X-rays 3.X-ray cavities 4.Dark.
Blazars and Neutrinos C. Dermer (Naval Research Laboratory) Collaborators: A. M. Atoyan (Universite de Montreal) M. Böttcher (Rice University) R. Schlickeiser.
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Propagation of Ultra-high Energy Cosmic Rays in Local Magnetic Fields Hajime Takami (Univ. of Tokyo) Collaborator: Katsuhiko Sato (Univ. of Tokyo, RESCEU)
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio Quarks-08.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
High Energy Emission in Extragalactic Nonblazar Sources Chuck Dermer U.S. Naval Research Laboratory July 4, 2006 Multi-Messenger Approach to Unidentified.
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Newly Born Pulsars as Sources of High and Ultrahigh Energy Cosmic Rays Ke Fang University of Chicago ISCRA - Jul 9, KF, Kotera, Olinto 2012, ApJ,
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Origin of high-energy cosmic rays Vladimir Ptuskin IZMIRAN.
Dongsu Ryu (CNU), Magnetism Team in Korea
Diffuse Emission and Unidentified Sources
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
November 1 - 3, nd East Asia Numerical Astrophysics Meeting KASI, Korea Shock Waves and Cosmic Rays in the Large Scale Structure of the Universe.
Propagation and Composition of Ultra High Energy Cosmic Rays
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Masaki Yamaguchi, F. Takahara Theoretical Astrophysics Group Osaka University, Japan Workshop on “Variable Galactic Gamma-ray Source” Heidelberg December.
A.Z. Gazizov LNGS, Italy Based on works with V. Berezinsky and R. Aloisio UHECR-08.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Don Ellison, NCSU, Future HE-Observatory, SNR/CR Working Group Magnetic Field Amplification in Astrophysical Shocks 1)There is convincing evidence for.
The interplay of GeV electrons & magnetic fields: The interplay of GeV electrons & magnetic fields: interesting aspects in galaxies, radio galaxies and.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Gamma Rays from the Radio Galaxy M87
Observation of Pulsars and Plerions with MAGIC
銀河団における超(非)熱的過程 井上 進 (国立天文台) GLAST Suzaku + other topics GeV 100 keV
Particle Acceleration in the Universe
ultra high energy cosmic rays: theoretical aspects
Predictions of Ultra - High Energy Neutrino fluxes
A. Uryson Lebedev Physical Institute RAS, Moscow
Presentation transcript:

Gamma-Rays and UHE Cosmic Rays from Clusters of Galaxies Susumu Inoue (Nat. Astron. Obs. Japan) and collaborators GeV 100 keV HESS Auger GLAST Suzaku ZeV TeV

outline 1. introduction 2. gamma-ray emission from clusters 3. UHE cosmic rays from clusters - UHE proton - photon pair syn.+IC - UHE cosmic ray nuclei (and photopairs) I, Aharonian & Sugiyama I, Sigl, Armengaud & Miniati - cascading (pair “halo”) I, Coppi & Aharonian “Multi-messenger-nisme”

current evidence for nonthermal emission: Coma1. introduction radio Giovannini et al. 93 hard X-ray Fusco-Femiano et al. 04 Rossetti & Molendi  detection no detection gamma-rayno clear evidence yet! GeV Reimer et al. 03 EUV Bowyer et al. 04 TeV Perkins et al. 06 Renaud et al. astro-ph/

large scale structure formation (SF) shocks formation of galaxies, groups, clusters... = hierarchical, dark matter-driven mergers and accretion → shock formation → gas heating + nonthermal particle acceleration → nonthermal radiation cosmological hydro simulations by Ryu et al. 03 shock velocitiesthermal emission clusters are forming this very moment!

cluster accretion shocks accretion (minor merger) (major) merger Ryu et al. 03 strong (high M ) shock -> high injection, hard spectra weak (low M ) shock -> low injection, soft spectra crucial for nonthermal high energy phenomena

nonthermal high energy emission from clusters Miniati ‘03 thermal>100 MeV>100 keV primary electron IC LE proton p+p->  0 UHE proton-induced pair syn.+IC c.f. Aharonian 02 Rordorf, Grasso & Dolag ‘04 traces shock traces gas e.g. Waxman & Loeb 00 Totani & Kitayama 00 e.g. Völk et al. 96 Berezinsky et al. 97 t IC <<t shock t loss, t conf >>t H

UHE proton-induced pair emission from cluster accretion shocks accel. vs CMB losses, lifetime photopion lifetime escape accel. B s =0.1  G photopair accel. B s =1  G e.g. Coma-like cluster M=2x10 15 M  (T=8.3 keV) WMAP cosmo. parameters Inoue, Aharonian & Sugiyama 2005 ApJ 628, L9 proton E max c.f. Kang, Rachen & Biermann 97 R s ~3.2 Mpc V s ~2200 km/s B s,eq ~ 6  G E max ~ eV photopair important t acc =(20/3)  r g c/V s 2 shock radius, velocity, etc. Bohm limit shock accel. time SNR observations  ~1 e.g. Völk et al. 05 escape time t esc ~R 2 /D(E=E max )~R/V~2 Gyr shock lifetime t sl ~R/V~2 Gyr < t adiab ~6 Gyr

proton injection luminosity in accretion shocks accretion rate & luminosity M(M,z)=f gas f acc V s 3 /G L acc (M,z)=f gas f acc GMM/R s ~2.7x10 46 (f gas /0.16) (f acc /0.1) (M/ 2x10 15 M  ) 5/3 erg/s proton luminosity & spectrum L p (M,z)=f p L acc (M,z) f p =0.1 F p (E,M,z) ∝ E -2 exp(-E/E max ) f acc =0.1 normalized from simulation Keshet et al. 03 secondary production and emission processes p+  CMB → p+ e + e - E p ~10 18 eV E +- ~  +- E p ~10 15 eV → e + e - +B(~  G) → syn. E  ~keV-MeV e + e - +  CMB → IC E  ~TeV-PeV Aharonian 02 solve proton & pair kinetic eq...

emitted flux & detectability Coma-like cluster at D=100 Mpc sensitivities for 1 deg 2 extended source - large radiative efficiency from protons - hard (  ~-1.5) spectrum + rollover - sensitive to B c.f. primary IC, pp  0 (  ~-2) > TeV “absorption” by IRB+CMB Suzaku, NeXT HESS, MAGIC, CANG.3, etc. 5  100h

cascade emission: pair “halo” pre-“absorbed” flux cascade down to GeV-TeV cluster pair “halos” - isotropic (much stronger than beamed sources) - hard spectrum also for p-p  0 from core probe of IRB, TeV-PeV power Aharonian, Coppi & Völk 94 Coppi & Aharonian 97

3. UHECRs from cluster accretion shocks? Norman, Achterberg & Melrose ‘95 Kang, Ryu & Jones 96 Kang, Rachen & Biermann 97 GRB AGN jet clusters energetic requirements L cluster ~10 46 erg/s n cluster ~10 -6 Mpc -3 P cluster ~~10 40 erg s -1 Mpc eV u CR ~ erg cm -3  CR ~0.3(1) Gyr for p (Fe) P CR ~3x10 37 erg s -1 Mpc -3 massive clusters (~10 15 M  ) energetically plausible but proton E max insufficient oblique shocks do not help Ostrowski & Siemieniec-Ozieblo 00 “Hillas plot” adapted from Yoshida & Dai 98

UHECRs: energy losses during propagation p+  CMB → p+ e + e - E p >~5x10 17 eV p+  CMB → p+  E p >~7x10 19 eV L p, 20eV <~100 Mpc A+  CMB → A+ e + e - A+  FIRB → A-iN +iN Nagano & Watson 00 Fe p  E L loss L Fe, 20eV <~300 Mpc protons: photopair+photopion nuclei: photopair+photodisint. e.g. Stecker & Salamon 99 E>2x10 19 eV no data at all (too low statistics) E<2x10 19 eV light dominant but greater uncertainties than commonly believed? current data on composition HiRes stereo Xmax Watson astro-ph/

nuclei from cluster accretion shocks as UHECRs photodisint photopair B s =0.1  G B s =1  G heavy nuclei E max for B s ~1  G, E Fe, max >~10 20 eV Inoue, Sigl, Armengaud & Miniati in prep. UHE nuclei propagation calculations 56 Fe lifetime escape log E [eV] log t acc, t loss [yr] B s ~1  G Johnston-Hollitt & Ekers 05 - simulation-based structured IGB models (also no IGB case) - source density n s ~10 -6 Mpc -3 ∝ baryon density - source power L CR (M)~ 3x10 45 erg/s (f CR /0.1)(M/2x10 15 M  ) 5/3 - spectral index p=2, E max (Z) from t acc vs. t loss, t life - Galactic CR-like source composition (n Fe /n p ~10 -3 at fixed E/A) - CMB+FIRB losses, IGB deflections inc. all secondary nuclei Feretti & Neumann 06

UHE nuclei from clusters: results with IGB no IGB spectracomposition anisotropy spectra, anisotropy, composition consistent with current HiRes but not AGASA? higher B s ? predictions: - “GZK” cutoff >10 20 eV - heavy dominant >10 19 eV - large scale aniso. toward few nearby sources Auger, TA, EUSO eV eV eV f CR ~0.03 f CR ~0.005

source composition “Galactic CR-like” (solar metallicity) metallicity outside clusters (warm-hot IGM filaments) hard spectra at high E p<~1.5 Drury, Meyer & Ellison 99 nonlinear acceleration effects? Kang & Jones 05 rigidity selection (heavy enhancement) stronger effects for accretion shocks? Nicastro et al 05 ~0.1 solar (X-ray absorption) ~0.2 solar (simulations) Cen & Ostriker astro-ph/

UHE nuclei induced pairs and emission photodisint photopair B s =0.1  G B s =1  G nuclei photopair+photodisint. loss important additional hard X-ray and  -ray emission, broader spectra? 56 Fe 16 O lifetime escape direct proof of nuclei acceleration constrain source composition potentially E e+e-,A ~(m e /Am p ) Z E p E e-,ndec ~(m n-p /Am p )Z E p

summary expected high energy emission from clusters primary inverse Compton outskirts, MeV-GeV p-p  0 core, GeV-TeV p-p e +- core, MeV UHE p photopair emission outskirts, MeV+TeV cascade emission (pair halo) larger scales, GeV-TeV UHECR nuclei EeV-ZeV different components dominate at different energy, location potential probe of cluster evolution new type of high energy source potentially very rich information fertile new field of high energy astrophysics (Renaixança)! e.g. non-gravitational energy injection, I & Nagashima, in prep. but very little neutrinos…