天線工程期中報告 論文研討: Kin-Lu Wong and Yu-Chen Chen “Small-Size Hybrid Loop/Open-Slot Antenna for the LTE Smartphone ,” IEEE Transactions on Antenna and Propagation , no. 99 , pp.1-1, 2015. 報告人: 碩研電子一甲 MA430105 呂子齊 Southern Taiwan University of Science and Technology
Outline 1.摘要 2.天線設計 3.實測與模擬天線輻射效率 4.結論 5.心得 參考文獻
摘要 運用LOOP、開槽孔作為天線的架構。 運用LC電路特性來調整模態的匹配。 利用槽孔激發模態,並有效地增加頻寬。 參考文獻 A simple circularly polarized loop tag antenna for increased reading distance
天線設計(1) 1.整體尺寸:140 X 75 X 5.8 mm3 2.天線輻射尺寸:40 X 7 X 5.8 mm3 3.操作頻帶:0.698GHz~0.96GHz、1.71GHz~2.69GHz、3.4GHz~3.8GHz
天線設計(2) 探討Ant1和Ant1a不同類型所產生不同的結果,當為Ant1a(增加LC)時,可以發現在低頻會比Ant1多一個模態,高頻的部分也會有較寬的頻寬。
天線設計(3) 左圖為探討開槽孔天線部分(將正面移除)和Proposed的差異,可以發現再1/4波長共振出一個約在1.8GHz的模態。 右圖則是探討 t 路徑長度改變,所造成的變化,可以看到在1.9GHz的模態會隨著路徑的增加而漸漸往低頻移動。
實測與模擬天線輻射效率 此圖為表示天線在低、中、高頻,所表現出的天線輻射效率,可以看見在實測與模擬之間並沒有太大的不同。
結論 本天線利用各以1/4波長共振的LOOP及開槽孔架 構來產生出我們所需要的模態,該天線更以一小 尺寸面積(7*40mm2)作為天線輻射主體面積,以 有效減少天線在產品內部所佔據的範圍,同時該 天線設計可以將LTE的低、中、高頻的操作頻段 都包含進去,以達到多頻的應用。
心得 本文的天線設計是以開槽孔及LOOP的方式下去共振出所需要的模態,在近一步以LC電路匹配的方式來達成我們所需要的頻帶。
參考文獻 [1] Y. W. Chi and K. L. Wong, “Very-small-size printed loop antenna for GSM/DCS/PCS/UMTS operation in the mobile phone,” Microwave Opt. Technol. Lett., vol. 51, pp. 184-192, Jan. 2009. [2] Y. W. Chi and K. L. Wong, “Quarter-wavelength printed loop antenna with an internal printed matching circuit for GSM/DCS/PCS/UMTS operation in the mobile phone,” IEEE Trans. Antennas Propag., vol. 57, pp. 2541-2547, Sep. 2009. [3] K. L. Wong, W. Y. Chen, and T. W. Kang, “On-board printed coupled-fed loop antenna in close proximity to the surrounding ground plane for penta-band WWAN mobile phone,” IEEE Trans. Antennas Propag., vol. 59, pp. 751-757, Mar. 2011. [4] Y. L. Ban, S. Yang, Z. Chen, K. Kang, and J. L. W. Li, “Decoupled planar WWAN antennas with T-shaped protruded ground for smartphone applications,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 483-486, 2014. [5] H. Wang, M. Zheng, and S. Q. Zhang, “Monopole slot antenna,” US Patent No. 6618020 B2, Sep. 2003. [6] C. I. Lin and K. L. Wong, “Printed monopole slot antenna for internal multiband mobile phone antenna,” IEEE Trans. Antennas Propag., vol. 55, pp. 3690-3697, Dec. 2007. [7] K. L. Wong and L. C. Lee, “Multiband printed monopole slot antenna for WWAN operation in the laptop computer,” IEEE Trans. Antennas Propag., vol. 57, pp. 324-330, Feb. 2009.
[8] K. L. Wong, P. W. Lin, and C. H. Chang, “Simple printed monopole slot antenna for penta-band WWAN operation in the mobile handset,” Microwave Opt. Technol. Lett., vol. 53, pp. 1399-1404, Jun. 2011. [9] B. Yuan, Y. Cao, G. Wang, and B. Cui, “Slot antenna for metal-rimmed mobile handsets,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp.1334-1337, 2012. [10] C. Q. Lei, Y. L. Ban, J. H. Chen and J. L. W. Li, “Small-size slot antenna for seven-band LTEIWWAN mobile phone operation,” 2012 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), pp. 1- 2, Chengdu, China. [11] K. L. Wong, Planar Antennas for Wireless Communications. New York: Wiley, 2003. [12] I. Poole, “LTE frequency bands and spectrum allocations,” [Online] Available: http://www.radio-electronics.com/, 2013. [13] K. L. Wong and T. W. Weng, “Small-size triple-wideband LTE/WWAN tablet device antenna,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp.1516-1519, 2013. [14] K. L. Wong and Z. G. Liao, “Passive reconfigurable triple-wideband antenna for LTE tablet computer,” IEEE Trans. Antennas Propag., vol. 63, Mar. 2015. (to appear) [15] C. W. Chiu, C. H. Chang, and Y. J. Chi, “A meandered loop antenna for LTE/WWAN operations in a smartphone,” Progress In Electromagnetics Research C, vol. 16, pp. 147-160, 2010.
[16] K. L. Wong and W. Y. Chen, “Small-size printed loop-type antenna integrated with two stacked coupled-fed shorted strip monopoles for eight-band LTE/GSM/UMTS operation in the mobile phone,” Microwave Opt. Technol. Lett., vol. 52, pp. 1471-1476, 2010. [17] C. T. Lee and K. L. Wong, “Planar monopole with a coupling feed and an inductive shorting strip for LTE/GSM/UMTS operation in the mobile phone,” IEEE Trans. Antennas Propag., vol. 58, pp. 2479-2483, Jul. 2010. [18] K. L. Wong, T. W. Kang, and M. F. Tu, “Internal mobile phone antenna array for LTE/WWAN and LTE MIMO operations,” Microwave Opt. Technol. Lett., vol. 53, pp. 1569-1573, 2011. [19] F. H. Chu and K. L. Wong, “Internal coupled-fed dual-loop antenna integrated with a USB connector for WWAN/LTE mobile handset,” IEEE Trans. Antennas Propag., vol. 59, pp. 4215-4221, Nov. 2011. [20] C. W. Yang, Y. B. Jung, and C. W. Jung, “Octaband internal antenna for 4G mobile handset,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp.817-819, 2011. [21] D. G. Kang and Y. Sung, “Coupled-fed planar printed shorted monopole antenna for LTE/WWAN mobile handset applications,” IET Microw. Antennas Propag., vol. 6, pp. 1007–1016, 2012. [22] Y. L. Ban, C. L. Liu, J. L. W. Li, J. Guo, and Y. Kang, “Small-size coupled-fed antenna with two printed distributed inductors for seven-band WWAN/LTE mobile handset,” IEEE Trans. Antennas Propag., vol. 61, pp. 5780-5784, Nov. 2013.
[23] J. H. Lu and J. L. Guo, “Small-size octaband monopole antenna in an LTE/WWAN mobile phone,” IEEE Antennas Wireless Propag., vol. 13, pp. 548-551, 2014. [24] ANSYS HFSS. [Online] Available: http://www.ansys.com/staticassets/ ANSYS/staticassets/resourcelibrary/brochure/ansys-hfss-brochu re-16.0.pdf, 2015. [25] K. L. Wong and M. T. Chen, “Small-size LTE/WWAN printed loop antenna with an inductively coupled branch strip for bandwidth enhancement in the tablet computer,” IEEE Trans. Antennas Propag., vol. 61, pp. 6144-6151, Dec. 2013.
THE END