RuleML Meets RDF: Triples, Rules, and Taxonomies Harold Boley*, NRC IIT e-Business Benjamin Grosof, MIT Sloan (with help from Bruce Spencer, Steve Ross-Talbot,

Slides:



Advertisements
Similar presentations
Dr. Leo Obrst MITRE Information Semantics Information Discovery & Understanding Command & Control Center February 6, 2014February 6, 2014February 6, 2014.
Advertisements

RuleML Meets RDF: Triples, Rules, and Taxonomies Harold Boley*, NRC IIT e-Business Benjamin Grosof, MIT Sloan (with help from Bruce Spencer, Steve Ross-Talbot,
A Web Rules WG Charter Focus Strawman Proposal Version 1.1, April 30, 2005 This Version Prepared by: Benjamin Grosof, Harold Boley, Michael Kifer, and.
CH-4 Ontologies, Querying and Data Integration. Introduction to RDF(S) RDF stands for Resource Description Framework. RDF is a standard for describing.
RDF Schemata (with apologies to the W3C, the plural is not ‘schemas’) CSCI 7818 – Web Technologies 14 November 2001 Van Lepthien.
The Semantic Web – WEEK 4: RDF
CS570 Artificial Intelligence Semantic Web & Ontology 2
SIG2: Ontology Language Standards WebOnt Briefing Ian Horrocks University of Manchester, UK.
1 Ontology Language Comparisons doug foxvog 16 September 2004.
David Hirtle Co-op student, NRC IIT e-Business August 12, 2004 The RuleML 0.87 Release UML Model, Validation Stability, and Abridged Syntax.
Using the Semantic Web to Construct an Ontology- Based Repository for Software Patterns Scott Henninger Computer Science and Engineering University of.
Semantic Web Tools for Authoring and Using Analysis Results Richard Fikes Robert McCool Deborah McGuinness Sheila McIlraith Jessica Jenkins Knowledge Systems.
The Semantic Web Week 12 Term 1 Recap Lee McCluskey, room 2/07 Department of Computing And Mathematical Sciences Module Website:
From SHIQ and RDF to OWL: The Making of a Web Ontology Language
Semantic Web Research: Visual Modelling of OWL-S Services Computer Science Annual Workshop September 2004 Charlie Abela, James Scicluna Department of Computer.
RDF: Concepts and Abstract Syntax W3C Recommendation 10 February Michael Felderer Digital Enterprise.
1. Motivation Knowledge in the Semantic Web must be shared and modularly organised. The semantics of the modular ERDF framework has been defined model.
RDF (Resource Description Framework) Why?. XML XML is a metalanguage that allows users to define markup XML separates content and structure from formatting.
The RuleML Initiative Prepared by (in alphabetical order): Harold Boley, Mike Dean, Benjamin Grosof, Michael Kifer, Said Tabet, Gerd Wagner W3C Workshop.
Aidministrator nederland b.v. Adding formal semantics to the Web Jeen Broekstra, Michel Klein, Stefan Decker, Dieter Fensel,
The RuleML Initiative, July/August 2001 International Semantic Web Working Symposium SWWS July - 1 August 2001, Stanford, California, USA Harold.
22-Sep-06 CS6795 Semantic Web Techniques 0 Horn Logic Markup Languages.
1 Expert Finding for eCollaboration Using FOAF with RuleML Rules MCeTECH May 2006 Jie Li 1,2, Harold Boley 1,2, Virendrakumar C. Bhavsar 1, Jing.
Practical RDF Chapter 1. RDF: An Introduction
CS 6795 SEMANTIC WEB TECHNIQUES TEAM6: HAWRA BADER ALSEEF JEEVAN REDDY KODUR 19 NOV, 2012.
Notes for Chapter 12 Logic Programming The AI War Basic Concepts of Logic Programming Prolog Review questions.
XP 1 CREATING AN XML DOCUMENT. XP 2 INTRODUCING XML XML stands for Extensible Markup Language. A markup language specifies the structure and content of.
The 7th International Web Rule Symposium: Research Based and Industry Focused (RuleML 2013) July 11-13, 2013, Seattle, USA.
INF 384 C, Spring 2009 Ontologies Knowledge representation to support computer reasoning.
1 Representing Data with XML September 27, 2005 Shawn Henry with slides from Neal Arthorne.
Logics for Data and Knowledge Representation
A Z Approach in Validating ORA-SS Data Models Scott Uk-Jin Lee Jing Sun Gillian Dobbie Yuan Fang Li.
Grailog: Graph inscribed logic Harold Boley NRC-IIT Fredericton Faculty of Computer Science University of New Brunswick Canada 12 November 2008 (Revised:
1 RDF/RuleML Interoperability W3C Workshop on Rule Languages for Interoperability Position Paper, April 2005 Authors: Harold Boley 1, Jing Mei 2,
David Hirtle Coop student, NRC IIT e-Business December 2, 2003 Object-Oriented RuleML Re-Modularized and XML Schematized via Content Models.
RDF (Resource Description Framework). 2 Table of Contents  Introduction  Basic RDF –Basic RDF Model –Basic Syntax  Containers  Statements about Statements.
Declarative vs Procedural Programming  Procedural programming requires that – the programmer tell the computer what to do. That is, how to get the output.
Object-Oriented RuleML for RDF: Facts, Queries, and Inferences Harold Boley*, NRC IIT e-Business (with help from Said Tabet, Duncan Johnston-Watt, Benjamin.
Of 41 lecture 4: rdf – basics and language. of 41 RDF basic ideas the fundamental concepts of RDF  resources  properties  statements ece 720, winter.
RuleML: Markup von Regelwerken im Semantischen Web (Markup of Rule Systems in the Semantic Web) Harold Boley, DFKI GmbH Online 2002, Düsseldorf, January.
1 The OO jDREW Reference Implementation of RuleML RuleML-2005, November 2005 Marcel Ball 1, Harold Boley 2, David Hirtle 1,2, Jing Mei 1,2, Bruce.
Rules, RIF and RuleML.
Semantically Processing The Semantic Web Presented by: Kunal Patel Dr. Gopal Gupta UNIVERSITY OF TEXAS AT DALLAS.
1 Artificial Intelligence Applications Institute Centre for Intelligent Systems and their Applications Stuart Aitken Artificial Intelligence Applications.
DAML+OIL: an Ontology Language for the Semantic Web.
OIL and DAML+OIL: Ontology Languages for the Semantic Web Sungshin Lim TOWARDS THE SEMANTIC WEB: Ontology-driven Knowledge.
Of 33 lecture 1: introduction. of 33 the semantic web vision today’s web (1) web content – for human consumption (no structural information) people search.
The RDF meta model Basic ideas of the RDF Resource instance descriptions in the RDF format Application-specific RDF schemas Limitations of XML compared.
Description of Information Resources: RDF/RDFS (an Introduction)
RuleML Rules Lite Harold Boley, NRC IIT e-Business Said Tabet, Macgregor Corp With Key Contributions from the Joint Committee DAML PI Meeting, Captiva.
The Semantic Web Riccardo Rosati Dottorato in Ingegneria Informatica Sapienza Università di Roma a.a. 2006/07.
From RuleML 0.88 to 0.89 Sublanguages Beyond Horn Logic ― Validation and Translation David Hirtle NRC-IIT, UNB April 21, 2005 Update: June 8, 2005.
Representing Data with XML February 26, 2004 Neal Arthorne.
Object-Oriented RuleML for RDF: Facts, Queries, and Inferences Harold Boley, NRC IIT e-Business (with help from Said Tabet, Duncan Johnston-Watt, Benjamin.
The Rule Markup Initiative: RDF Relationships and DTD Modularization Harold Boley Benjamin Grosof Said Tabet Updated (8 Mar 2001) from talk at: RDF Interest.
The Semantic Web and Ontology. The Semantic Web WWW: –syntactic transmission of information –only processible by human – no semantic conservation of the.
Harold Boley NRC IIT e-Business MOST Workshop - Maritimes Open Source Technologies Université de Moncton Nov 10, 2004 Revised: Apr 14, 2005 The Open RuleML.
RuleML: Data Model, Language Hierarchy, and Transformations Harold Boley, DFKI GmbH, Visiting Researcher at NRC IIT e-Business, Fredericton 2001 Seminar.
Raluca Paiu1 Semantic Web Search By Raluca PAIU
1 RIF Design Roadmap Draft PM Harold Boley (NRC), Michael Kifer (Stony Brook U), Axel Polleres (DERI), Jos de Bruijn (DERI), Michael Sintek.
Of 35 lecture 17: semantic web rules. of 35 ece 627, winter ‘132 logic importance - high-level language for expressing knowledge - high expressive power.
RuleML for the Semantic Web Harold Boley OntoWeb Kick-off WorkshopOntoWeb Kick-off Workshop, Heraklion, Greece, June 2001 Revised: 17 July 2001 (joint.
OWL Web Ontology Language Summary IHan HSIAO (Sharon)
 XML derives its strength from a variety of supporting technologies.  Structure and data types: When using XML to exchange data among clients, partners,
A Test Case Suite for Hornlog+ RuleML 1.01 A Test Case Suite for Hornlog+ RuleML 1.01 CS6795 Semantic Web Techniques Team 3: Zhenzhi Cui Radhika Yadav.
LegalRuleML Metamodel Tara Athan, Harold Boley, Guido Governatori, Monica Palmirani, Adrian Paschke, Adam Wyner July 13, 2013 RuleML th International.
Semantic Web In Depth Resource Description Framework Dr Nicholas Gibbins –
The Semantic Web By: Maulik Parikh.
CmpE 583- Web Semantics: Theory and Practice RULES & RULE MARKUP
Rules, RIF and RuleML.
Presentation transcript:

RuleML Meets RDF: Triples, Rules, and Taxonomies Harold Boley*, NRC IIT e-Business Benjamin Grosof, MIT Sloan (with help from Bruce Spencer, Steve Ross-Talbot, Said Tabet, and Gerd Wagner) * On leave from DFKI GmbH Joint Committee Telecon Meeting 5 November 2002 Revision based on JC Feedback 19 November 2002

RuleML Meets RDF 1 Introduction Increased mutual RuleML-RDF(S) interest: 1. RDF and RDF Schema need rules for metadata and taxonomy deduction, transformation, etc.; so rules should be interchangeable much like RDF(S) itself, and RuleML can be employed for this 2. RuleML rules may also be expressed in RDF 3. RuleML rules need types for constraining variables, which should be able to reuse the growing taxonomic vocabularies in the Semantic Web In the following we treat these three RuleML-RDF(S) topics: 1. RDF triples and rules in RuleML 2. RDF formats for RuleML rules 3. RDFS taxonomies for typed RuleML RuleML’s RDF form (1.) allows roundtrip to RDF RuleML (2.), typed RuleML (3.) could also be given an RDF format (2.), and RDFS (3.) could be written in RuleML as well (1.)

RuleML Meets RDF 2 Overview of RDF Triples & Rules in RuleML RuleML 0.8 uses – RDF triples as special binary facts and – RDF rules over such facts Both are defined as part of the hierarchy of RuleML DTDs RDF's bNodes in RuleML not treated here, but several approaches have been discussedseveral approaches

RuleML Meets RDF 3 RuleML 0.8: RDF Triples as Binary Facts " has creator Ora Lassila" Ora Lassila Original online RDF triples become special binary facts where the relation and first argument must be urirefs, and the second argument can be urirefs or literals Original online

RuleML Meets RDF 4 RuleML 0.8: RDF Rules Over Triple Facts RDF rules over triple facts can prove implicit triples, top-down, or can derive new triples, bottom-up IF "Page has creator Person" THEN "Page was accessed by Person" Page Person Page Person Original online

RuleML Meets RDF 5 Structure of the RuleML DTD Hierarchy Our system of DTDs (current version: 0.8) uses a modularization approach similar to XHTML in order to accomodate the various rule subcommunities The evolving hierarchy of RuleML DTDs forms a partial order with ruleml as the greatest element (a ruleml-rooted DAG) -- many ‘smallest’ elements Each DTD node in the hierarchy (conformance “lattice”) corresponds to a specific RuleML sublanguage, syntactically and semantically: – ‘Union’ (join) of sublanguages reached via outgoing links: to smaller or equal nodes below – ‘Intersection’ (meet) of sublanguages via incoming links: from greater or equal nodes above

RuleML Meets RDF 6 The Module Hierarchy of RuleML DTDs urc-bin-data-ground-fact urc-bin-data-ground-log urc-bin-datalog bin-datalogurc-datalog ur-datalog ur-hornlog ur-equalog hornlog equalog datalog ur Rooted DAG will be extended with branches for further sublanguages URL/URI-like ‘ur’-objects derivation rules RDF-like triples (without bNodes) ur-datalog = join(ur,datalog) RDF rules (without bNodes) ruleml

RuleML Meets RDF 7 Overview of RDF Formats for RuleML Rules An experimental translator for the XML-based RuleML 0.7 to RDF has been available in XSLT: This was the first RuleML in RDFRuleML in RDF The current RuleML 0.8 stands in a direct RDF Context: It integrates the XML and RDF data modelsContextintegrates the XML and RDF data models Michael Sintek has implemented translators between Prolog and an RDF-based RuleML 0.8 Michael Sintektranslators Massimo Paolucci used this RDF RuleML in DAML-S Semantic Matchmaking for Web Services Discovery to describe constraints related to input and output, and also preconditions and effects for planning Semantic Matchmaking for Web Services Discoveryconstraints related to input and output, and also preconditions and effects for planning We recently further developed RDF RuleML 0.8 using the W3C RDF Validation Service:

RuleML Meets RDF 8 From Natural Language to Horn Logic Prolog-like formalization (syntax generated from XML): ''The discount for a customer buying a product is 5.0 percent if the customer is premium and the product is regular.'' ''The discount for a customer buying a product is 7.5 percent if the customer is premium and the product is luxury.''... English Business Rules:

RuleML Meets RDF 9 XML-RDF RuleML 0.8: Markup and Tree ''The discount for a customer buying a product is 5.0 percent if the customer is premium and the product is regular.'' discount customer product 5.0 percent premium customer regular product imp headatom opr rel discount var customer var product ind 5.0 percent bodyand atom opr rel premium var customer atom opr rel regular var product ‘Cartesian’ OrdLab Tree Version: Has tag-labeled nodes (drawn as vertical lines) and three kinds of (horizontal) arcs: 1.Ordered (unlabeled) arcs, XML-like: drawn as arrows 2.Labeled (unordered) arcs, RDF-like: drawn as labeled lines 3.PCDATA arcs: drawn as dotted lines

RuleML Meets RDF 10 RDF RuleML 0.8: Principles Use abbreviated ‘type - property’-alternating (“striped”) RDF syntax (similar to nested property lists), which nests subtrees and employs types as rdf:Description s: – A particular rule base becomes a (normally anonymous) RDF resource of type rulebase with a _clauses property / role leading to its rdf:Seq - type of rules labeled rdf:li for rdf:_1, rdf:_2,... – An imp rule has _head and _body properties / roles leading to type - atom or type - and resources – Etc., down to RuleML's PCDATA leaves for relation symbols, individual constants, and variables, which become corresponding resources with ruleml:cdata literals in RDF – For closing off nodes, e.g. to fix the arity of atom ic formulas, DAML+OIL or OWL constructs could be used

RuleML Meets RDF 11 RDF RuleML 0.8: Striped Serialization Original online type role type role... The discount rule (as a rulebase ) in RDF:

RuleML Meets RDF 12 RDF RuleML 0.8: N-Triples Format _:j _:j _:j _:j _:j _:j17480 "discount". _:j17479 _:j _:j _:j _:j17482 "customer". _:j17481 _:j _:j _:j17483 "product". _:j17481 _:j _:j _:j17484 "5.0 percent". _:j17481 _:j _:j17479 _:j _:j17478 _:j _:j _:j _:j _:j _:j17488 "premium". _:j17487 _:j _:j _:j _:j17490 "customer". _:j17489 _:j _:j17487 _:j _:j17486 _:j _:j _:j _:j17492 "regular". _:j17491 _:j _:j _:j _:j17494 "product". _:j17493 _:j _:j17491 _:j _:j17486 _:j _:j17485 _:j _:j17478 _:j _:j17477 _:j _:j17476 _:j17477.

RuleML Meets RDF 13 RDF RuleML 0.8: GraphViz Shape Original online Since this doesn’t show any details, click the

RuleML Meets RDF 14 RDF RuleML 0.8: Triple Roundtrip Turn the has creator triple, as a RuleML rulebase, again into RDF: Original online

RuleML Meets RDF 15 Overview of RDFS Taxonomies for RuleML RuleML 0.8 still uses an unsorted logic, although this can simulate typed/sorted variables by applying distinguished unary predicates to those variables: Predicates defined extensionally or via a taxonomy Based on a special treatment of sort predicates and sorted variables in rules, proofs can be kept at a more abstract level, thus reducing the search space A sort hierarchy is definable independently as the taxonomy of an Order-Sorted Logic or Description Logic, and be notated in RDFS, DAML+OIL, or OWL We are discussing preliminary constructs to link RuleML predicates/variables to externally defined RDFS classes (a similar mechanism is usable for ‘built-in’ XML datatypes)

RuleML Meets RDF 16 How Typed RuleML Variables Can Link to RDFS / DAML+OIL / OWL Classes RuleML and Order-Sorted Logic or Description Logic class hierarchies – e.g. in RDFS, DAML+OIL, or OWL – go together well (RDFS, … properties will be harder) ‘Lift’ RDF’s use of rdf:type for taxonomic RDFS typing of individuals/resources (also for RuleML’s ind s) New RDFS use: Access unchanged RDFS for typing of RuleML variables – RDFS taxonomy for typing must be cycle-free – If DAML+OIL or OWL taxonomy used, must also be consistent

RuleML Meets RDF 17 “Type by Application” Technique In RuleML's conjunctive rule-body tag and give a taxonomic RDFS type to a logic variable by applying an RDFS class via a rel – containing the RDF attribute rdf:resource – to that logic variable The ‘CARIN principle’ to not modify any taxonomicCARIN predicate via rules is fulfilled since this rel is an empty element, which cannot be defined via rules

RuleML Meets RDF 18 A Discounting Rule with Customer and Product Variables Typed by Applications: discount cust prod 5.0 percent cust premium cust prod regular prod Given that cust has type Customer and prod has type Product, the discount for a cust buying a prod is 5.0 percent if the cust is premium and the prod is regular.

RuleML Meets RDF 19 “Type by Declaration” Technique In RuleML's Horn-clause tags fact and imp give a taxonomic RDFS type to a logic variable by referring to an RDFS class via an rdf:type -like – RuleML role _taxo – containing the RDF attribute rdf:resource The ‘CARIN principle’ to not modify any taxonomicCARIN predicate via rules is fulfilled since this _taxo role directly links to the external RDFS taxonomy

RuleML Meets RDF 20 A Discounting Rule with Customer and Product Variables Typed by Declarations cust prod discount cust prod 5.0 percent premium cust regular prod Given that cust has type Customer and prod has type Product, the discount for a cust buying a prod is 5.0 percent if the cust is premium and the prod is regular.

RuleML Meets RDF 21 Typing Scope and Multiple Typing Reflecting the scope of logic variables – which is a single clause ( fact or imp ) – the typing scope is the clause containing the rel application or the _taxo role To express RDF-like multiple (intersection) types, just use these multiple types for one logic variable, e.g. the intersection European П Customer would be expressed with the two techniques by cust cust cust or

RuleML Meets RDF 22 Types, Description Logics, and Ontologies Order-Sorted Horn logics have provided a solid foundation for implementing such hierarchical types, possibly employing a DL-like classifier during unification or even a corresponding mechanism during indexing Summary: Such RDFS-RuleML links begin to realize a ‘loose coupling’ of taxonomies and rules, but much more work is needed for full ontologies

RuleML Meets RDF 23 References Harold Boley: Relationships Between Logic Programming and RDF, in: R. Kowalczyk, S.W. Loke, N.E. Reed, G. Graham (Eds.), Advances in Artificial Intelligence, LNAI 2112, Springer-Verlag, 2001Relationships Between Logic Programming and RDF Harold Boley: A Web Data Model Unifying XML and RDF. Draft, September 2001.A Web Data Model Unifying XML and RDF Harold Boley: The Rule Markup Language: RDF-XML Data Model, XML Schema Hierarchy, and XSL Transformations, Invited Talk, INAP2001, Tokyo, October 2001.The Rule Markup Language: RDF-XML Data Model, XML Schema Hierarchy, and XSL Transformations Harold Boley, Said Tabet, and Gerd Wagner: Design Rationale of RuleML: A Markup Language for Semantic Web Rules, Proc. SWWS'01, Stanford, July/August 2001.Design Rationale of RuleML: A Markup Language for Semantic Web Rules Andreas Eberhart, An Agent Infrastructure based on Semantic Web Standards, Workshop on Business Agents and the Semantic Web at the AI 2002, Calgary, CanadaAn Agent Infrastructure based on Semantic Web Standards Andreas Eberhart, Automatic Generation of Java/SQL based Inference Engines from RDF Schema and RuleML, International Semantic Web Conference 2002, SardiniaAutomatic Generation of Java/SQL based Inference Engines from RDF Schema and RuleML Benjamin Grosof: Representing E-Business Rules for the Semantic Web: Situated Courteous Logic Programs in RuleML, Proc. Workshop on Information Technologies and Systems (WITS '01), New Orleans, December, 2001.Representing E-Business Rules for the Semantic Web: Situated Courteous Logic Programs in RuleML Benjamin Grosof, Mahesh D. Gandhe, and Timothy W. Finin: SweetJess: Translating DamlRuleML to Jess, Proc. International Workshop on Rule Markup Languages for Business Rules on the Semantic Web, Sardinia (Italy), June 2002.SweetJess: Translating DamlRuleML to Jess Benjamin Grosof and Terrence Poon: Representing Agent Contracts with Exceptions using XML Rules, Ontologies, and Process Descriptions, Proc. International Workshop on Rule Markup Languages for Business Rules on the Semantic Web, Sardinia (Italy), June 2002.Representing Agent Contracts with Exceptions using XML Rules, Ontologies, and Process Descriptions Steve Ross-Talbot, Harold Boley, and Said Tabet: Playing by the Rules, Application Development Advisor 6(5), June 2002, Playing by the RulesApplication Development Advisor Michael Schroeder and Gerd Wagner (Eds.): Proceedings of the International Workshop on Rule Markup Languages for Business Rules on the Semantic Web. Sardinia, Italy, June 14, CEUR-WS Publication Vol-60.Proceedings of the International Workshop on Rule Markup Languages for Business Rules on the Semantic Web Gerd Wagner: How to Design a General Rule Markup Language?, Invited Talk, Workshop XML Technologien für das Semantic Web (XSW 2002), Berlin, June 2002.How to Design a General Rule Markup Language?