Rare Events and Phase Transition in Reaction–Diffusion Systems Vlad Elgart, Virginia Tech. Alex Kamenev, in collaboration with PRE 70, (2004); PRE 74, (2006); Ann Arbor, June, 2007
Reaction–Diffusion Models Lotka-Volterra model Examples: Binary annihilation Dynamical rules Discreteness
Outline: Outline: Hamiltonian formulation Rare events calculus Phase transitions and their classification
Example: Branching-Annihilation Rate equation: Reaction rules: PDF: Extinction time
Master Equation Generating Function (GF): GF properties:Multiply ME by and sum over : extinction probability
Hamiltonian Imaginary time “Schrodinger” equation: Hamiltonian is non-Hermitian
Hamiltonian For arbitrary reaction: Conservation of probability If no particles are created from the vacuum
Semiclassical (WKB) treatment Assuming: Hamilton-Jacoby equation (rare events !) Boundary conditions:Hamilton equations:
Branching-Annihilation Rate equation ! Zero energy trajectories !
Extinction time Extinction time
Diffusion Diffusion “Quantum Mechanics” “QFT “ Equations of Motion:Rate Equation:
Refuge R Lifetime: Instanton solution
Phase Transitions Phase Transitions Thermodynamic limit Extinction time vs. diffusion time Hinrichsen 2000
Critical exponents Hinrichsen 2000
Critical Exponents (cont) Critical Exponents (cont) d=1 d=2 d=3 d> How to calculate critical exponents analytically? What other reactions belong to the same universality class? Are there other universality classes and how to classify them?
Equilibrium Models Landau Free Energy: V Ising universality class: critical parameter (Lagrangian field theory) Critical dimension Renormalization group, -expansion
Reaction-diffusion models Reaction-diffusion models Hamiltonian field theory: p q V critical parameter
Directed Percolation Directed Percolation Reggeon field theory Janssen 1981, Grassberger 1982 Critical dimension Renormalization group, -expansion cf. in d=3 What are other universality classes (if any)?
k-particle processes `Triangular’ topology is stable! Effective Hamiltonian: k All reactions start from at least k particles Example: k = 2 Pair Contact Process with Diffusion (PCPD)
Reactions with additional symmetries Reactions with additional symmetries Parity conservation: Reversibility:
First Order Transitions Example:
Wake up ! Wake up ! Hamiltonian formulation and and its semiclassical limit. Rare events as trajectories in the phase space Classification of the phase transitions according to the phase space topology