1  = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Insights into d-wave superconductivity from quantum cluster approaches André-Marie.

Slides:



Advertisements
Similar presentations
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Advertisements

High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Superconductivity in Zigzag CuO Chains
André-Marie Tremblay Sponsors:.  = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Theory without small parameter: The Hubbard.
Quantum Cluster Methods for Correlated Materials Sherbrooke, 6-8 Juillet 2005.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Towards a first Principles Electronic Structure Method Based on Dynamical Mean Field Theory Gabriel Kotliar Physics Department and Center for Materials.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) Collaborators : G. Biroli M. Capone M Civelli.
Correlated Electron Systems: Challenges and Future Gabriel Kotliar Rutgers University.
Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators. Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators.
Extended Dynamical Mean Field. Metal-insulator transition el-el correlations not important:  band insulator: the lowest conduction band is fullthe lowest.
Simulating High Tc Cuprates T. K. Lee Institute of Physics, Academia Sinica, Taipei, Taiwan December 19, 2006, HK Forum, UHK.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
Some Applications of Dynamical Mean Field Theory (DMFT). Density Functional Theory Meets Strong Correlation. Montauk September 5-9 (2006). G.Kotliar Physics.
High Temperature Superconductors. What can we learn from the study of the doped Mott insulator within plaquette Cellular DMFT. Gabriel Kotliar Center for.
Electronic Structure of Strongly Correlated Materials : a DMFT Perspective Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University.
Quantum Criticality and Fractionalized Phases. Discussion Leader :G. Kotliar Grodon Research Conference on Correlated Electrons 2004.
Strongly Correlated Superconductivity G. Kotliar Physics Department and Center for Materials Theory Rutgers.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Diagrammatic Theory of Strongly Correlated Electron Systems.
Extensions of Single Site DMFT and its Applications to Correlated Materials Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers.
Theory without small parameter: How should we proceed? Identify important physical principles and laws to constrain non-perturbative approximation schemes.
Cluster DMFT studies of the Mott transition of Kappa Organics and Cuprates. G. Kotliar Physics Department and Center for Materials Theory Rutgers La Jolla.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Hubbard model  U/t  Doping d or chemical potential  Frustration (t’/t)  T temperature Mott transition as.
CPHT Ecole Polytechnique Palaiseau & SPHT CEA Saclay, France
Challenges in Strongly Correlated Electron Systems: A Dynamical Mean Field Theory Perspective Challenges in Strongly Correlated Electron Systems: A Dynamical.
Cluster Dynamical Mean Field Theories: Some Formal Aspects G. Kotliar Physics Department and Center for Materials Theory Rutgers Sherbrook July 2005.
Dynamical Mean Field Theory of the Mott Transition Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University UBC September.
Introduction to Strongly Correlated Electron Materials, Dynamical Mean Field Theory (DMFT) and its extensions. Application to the Mott Transition. Gabriel.
Theoretical Treatments of Correlation Effects Gabriel Kotliar Physics Department and Center for Materials Theory Rutgers University Workshop on Chemical.
Cellular DMFT studies of the doped Mott insulator Gabriel Kotliar Center for Materials Theory Rutgers University CPTH Ecole Polytechnique Palaiseau, and.
The Mott Transition: a CDMFT study G. Kotliar Physics Department and Center for Materials Theory Rutgers Sherbrook July 2005.
A new scenario for the metal- Mott insulator transition in 2D Why 2D is so special ? S. Sorella Coll. F. Becca, M. Capello, S. Yunoki Sherbrook 8 July.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Introduction to Strongly Correlated Electron Materials and to Dynamical Mean Field Theory (DMFT). Gabriel Kotliar Physics Department and Center for Materials.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators. Dynamical RVB: Cluster Dynamical Mean Field Studies of Doped Mott Insulators.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Gabriel Kotliar Rutgers
Correlated Materials: A Dynamical Mean Field Theory (DMFT) Perspective. Gabriel Kotliar Center for Materials Theory Rutgers University CPhT Ecole Polytechnique.
Optical Conductivity of Cuprates Superconductors: a Dynamical RVB perspective Work with K. Haule (Rutgers) K. Haule, G. Kotliar, Europhys Lett. 77,
SO(5) Theory of High Tc Superconductivity Shou-cheng Zhang Stanford University.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
1 A. A. Katanin a,b,c and A. P. Kampf c 2004 a Max-Planck Institut für Festkörperforschung, Stuttgart b Institute of Metal Physics, Ekaterinburg, Russia.
Exciting New Insights into Strongly Correlated Oxides with Advanced Computing: Solving a Microscopic Model for High Temperature Superconductivity T. Maier,
Superconductivity near the Mott transition a Cluster Dynamical Mean Field Theory (CDMFT) perspective Superconductivity near the Mott transition a Cluster.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
Zheng-Yu Weng IAS, Tsinghua University
Insulating Spin Liquid in the 2D Lightly Doped Hubbard Model
Development of density functional theory for unconventional superconductors Ryotaro Arita Univ. Tokyo/JST-PRESTO.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
R OLE OF D ISORDER IN S UPERCONDUCTING T RANSITION Sudhansu S. Mandal IACS, Kolkata HRI 1.
Mott Transition and Superconductivity in Two-dimensional
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
SUPERCONDUCTIVITY IN SYSTEMS WITH STRONG CORRELATIONS
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computer Science.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
Presented by Fermion Glue in the Hubbard Model: New Insights into the Cuprate Pairing Mechanism with Advanced Computing Thomas C. Schulthess Computational.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Bumsoo Kyung, Vasyl Hankevych, and André-Marie Tremblay
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Phases of Mott-Hubbard Bilayers Ref: Ribeiro et al, cond-mat/
Presentation transcript:

1  = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Insights into d-wave superconductivity from quantum cluster approaches André-Marie Tremblay

2 CuO 2 planes YBa 2 Cu 3 O 7- 

3 Experimental phase diagram n, electron density Hole doping Electron doping Damascelli, Shen, Hussain, RMP 75, 473 (2003) Optimal doping Stripes

4 U t  Simplest microscopic model for Cu O 2 planes. t’ t’’ LSCO The Hubbard model No mean-field factorization for d-wave superconductivity

5 An effective model Damascelli, Shen, Hussain, RMP 75, 473 (2003) A. Macridin et al., cond-mat/

6 T U A(k F,  )  U  Weak vs strong coupling, n=1 Mott transition (DMFT, exact d = ) U ~ 1.5W (W= 8t) LHB UHB t Effective model, Heisenberg: J = 4t 2 /U

7 U of order W at least, consider e and h doped n, electron density Damascelli, Shen, Hussain, RMP 75, 473 (2003) Mott Insulator

8 Theoretical difficulties Low dimension –(quantum and thermal fluctuations) Large residual interactions (develop methods) –(Potential ~ Kinetic) –Expansion parameter? –Particle-wave? By now we should be as quantitative as possible!

9 Theory without small parameter: How should we proceed? Identify important physical principles and laws to constrain non-perturbative approximation schemes –From weak coupling (kinetic) –From strong coupling (potential) Benchmark against “exact” (numerical) results. Check that weak and strong coupling approaches agree at intermediate coupling. Compare with experiment

10 Mounting evidence for d-wave in Hubbard Weak coupling (U << W) –AF spin fluctuations mediated pairing with d-wave symmetry (Bourbonnais (86), Scalapino (86), Varma (86), Bickers et al., PRL 1989; Monthoux et al., PRL 1991; Scalapino, JLTP 1999, Kyung et al. (2003)) –RG → Groundstate d-wave superconducting (Halboth, PRB 2000; Zanchi, PRB 2000, Berker 2005) Strong coupling (U >> W) –Early mean-field (Kotliar, Liu 1988, Inui et al. 1988) –Finite size simulations of t-J model Groundstate superconducting (Sorella et al., PRL 2002; Poilblanc, Scalapino, PRB 2002)

11 Th. Maier, M. Jarrell, Th. Pruschke, and J. Keller Phys. Rev. Lett. 85, 1524 (2000) T.A. Maier et al. PRL (2005) DCA Paramekanti, M. Randeria, and N. Trivedi Phys. Rev. Lett. 87, (2001) Variational Numerical methods that show Tc at strong coupling

12 Recent DCA results Finite-size studies U=4t –Maier et al., PRL 2005 Structure of pairing Kernel –Maier et al., PRL 2006

13 Bumsoo Kyung Sarma Kancharla Marc-André Marois Pierre-Luc Lavertu David Sénéchal

14 Outside collaborators Gabi Kotliar Marcello Civelli Massimo Capone

15 Outline Methodology T = 0 phase diagram –Cellular Dynamical Mean-Field Theory –Anomalous superconductivity : Non-BCS Pseudogap A broader perspective on d-wave superconductivity

16 Dynamical “variational” principle Luttinger and Ward 1960, Baym and Kadanoff (1961) …. H.F. if approximate  by first order FLEX higher order Universality Then  is grand potential Related to dynamics (cf. Ritz)

17 Another way to look at this (Potthoff) M. Potthoff, Eur. Phys. J. B 32, 429 (2003). Still stationary (chain rule)

18 A dynamical “stationary” principle SFT : Self-energy Functional Theory M. Potthoff, Eur. Phys. J. B 32, 429 (2003). With F  Legendre transform of Luttinger-Ward funct. For given interaction, F  is a universal functional of  no explicit dependence on H 0 (t). Hence, use solvable cluster H 0 (t’) to find F  Vary with respect to parameters of the cluster (including Weiss fields) Variation of the self-energy, through parameters in H 0 (t’) is stationary with respect to  and equal to grand potential there 

19 Variational cluster perturbation theory and DMFT as special cases of SFT C-DMFT V- DCA, Jarrell et al. Georges Kotliar, PRB (1992). M. Jarrell, PRL (1992). A. Georges, et al. RMP (1996). M. Potthoff et al. PRL 91, (2003). Savrasov, Kotliar, PRB (2001)

20 1D Hubbard model: Worst case scenario Excellent agreement with exact results in both metallic and insulating limits Capone, Civelli, SSK, Kotliar, Castellani PRB (2004) Bolech, SSK, Kotliar PRB (2003) Tests : CDMFT

21 Tests: Sin-charge separation d = 1 U/t = 4, = 0.2, n = 0.89 Kyung, Kotliar, Tremblay, PRB 2006

22 Test: CDMFT Recover d = infinity Mott transition Parcollet, Biroli, Kotliar, PRL (2004) /(4t)

23 Comparison, TPSC-CDMFT, n=1, U=4t TPSC CDMFT

24 Outline Methodology T = 0 phase diagram –Cellular Dynamical Mean-Field Theory –Anomalous superconductivity : Non-BCS Pseudogap A broader perspective on d-wave superconductivity

25 Outline T = 0 phase diagram –Cellular Dynamical Mean-Field Theory –Anomalous superconductivity : Non-BCS

26 CDMFT + ED Caffarel and Krauth, PRL (1994) Sarma Kancharla No Weiss field on the cluster!

27 Effect of proximity to Mott (CDMFT ) Kancharla, Civelli, Capone, Kyung, Sénéchal, Kotliar, A-M.S.T. cond-mat/ Sarma Kancharla D-wave OP t’= t’’=0

28 Gap vs order parameter Kancharla, Civelli, Capone, Kyung, Sénéchal, Kotliar, A-M.S.T. cond-mat/  t’= t’’=0

29 Competition AFM-dSC – using SFT See also, Capone and Kotliar, cond-mat/ , Macridin et al. DCA cond-mat/ David Sénéchal

30 Preliminary n, electron density Damascelli, Shen, Hussain, RMP 75, 473 (2003) t’ = -0.3 t, t’’ = 0.2 t U = 8t

31 Outline Methodology T = 0 phase diagram –Cellular Dynamical Mean-Field Theory –Anomalous superconductivity : Non-BCS Pseudogap A broader perspective on d-wave superconductivity

32 Outline Pseudogap

33 Pseudogap (CDMFT) Bumsoo Kyung Kyung, Kancharla, Sénéchal, A.-M.S. T, Civelli, Kotliar PRB (2006) 5% See also Sénéchal, AMT, PRL 92, (2004). t’ = -0.3 t, t’’ = 0 t U = 8t 15% 10% 4% Armitage et al. PRL 2003 Ronning et al. PRB 2003

34 Other properties of the pseudogap Effect of U Pseudogap size function of doping See also Sénéchal, AMT, PRL 92, (2004). Kyung, Kancharla, Sénéchal, A.-M.S. T, Civelli, Kotliar PRB in press Bumsoo Kyung

35 Outline Methodology T = 0 phase diagram –Cellular Dynamical Mean-Field Theory –Anomalous superconductivity : Non-BCS Pseudogap A broader perspective on d-wave superconductivity

36 Outline A broader perspective on d-wave superconductivity

37 One-band Hubbard model for organics Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003 ) H. Kino + H. Fukuyama, J. Phys. Soc. Jpn (1996), R.H. McKenzie, Comments Condens Mat Phys. 18, 309 (1998) t’/t ~

38 Layered organics (  BEDT-X family) ( t’ / t ) n = 1

39 Experimental phase diagram for Cl F. Kagawa, K. Miyagawa, + K. Kanoda PRB 69 (2004) +Nature 436 (2005) Diagramme de phase (X=Cu[N(CN) 2 ]Cl) S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

40 Perspective U/t  t’/t

41 Experimental phase diagram for Cl F. Kagawa, K. Miyagawa, + K. Kanoda PRB 69 (2004) +Nature 436 (2005) Diagramme de phase (X=Cu[N(CN) 2 ]Cl) S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

42 Mott transition (C-DMFT) Parcollet, Biroli, Kotliar, PRL 92 (2004) Kyung, A.-M.S.T. (2006) See also, Sénéchal, Sahebsara, cond-mat/

43 Mott transition (C-DMFT) Kyung, A.-M.S.T. (2006) See also, Sénéchal, Sahebsara, cond-mat/

44 Normal phase theoretical results for BEDT-X PI M Kyung, A.-M.S.T. (2006)

45 Experimental phase diagram for Cl F. Kagawa, K. Miyagawa, + K. Kanoda PRB 69 (2004) +Nature 436 (2005) Diagramme de phase (X=Cu[N(CN) 2 ]Cl) S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

46 Theoretical phase diagram BEDT Y. Kurisaki, et al. Phys. Rev. Lett. 95, (2005) Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003) X= Cu 2 (CN) 3 (t’~ t) Kyung, A.-M.S.T. cond-mat/ OP Sénéchal Sénéchal, Sahebsara, cond-mat/ Sahebsara Kyung

47 AFM and dSC order parameters for various t’/t Discontinuous jump Correlation between maximum order parameter and Tc AF multiplied by 0.1 Kyung, A.-M.S.T. cond-mat/

48 d-wave Kyung, A.-M.S.T. cond-mat/ Sénéchal, Sahebsara, cond-mat/

49 Prediction of a new type of pressure behavior Sénéchal, Sahebsara, cond-mat/ t’/t=0.8t AF SL dSC All transitions first order, except one with dashed line Triple point, not SO(5) Kyung, A.-M.S.T. cond-mat/

50 Références on layered organics H. Morita et al., J. Phys. Soc. Jpn. 71, 2109 (2002). J. Liu et al., Phys. Rev. Lett. 94, (2005). S.S. Lee et al., Phys. Rev. Lett. 95, (2005). B. Powell et al., Phys. Rev. Lett. 94, (2005). J.Y. Gan et al., Phys. Rev. Lett. 94, (2005). T. Watanabe et al., cond-mat/

51 Summary - Conclusion Ground state of CuO 2 planes (h-, e-doped) –V-CPT, (C-DMFT) give overall ground state phase diagram with U at intermediate coupling. –Effect of t’. Non-BCS feature –Order parameter decreases towards n = 1 but gap increases. –Max dSC scales like J. –Emerges from a pseudogaped normal state (Z) (scales like t). Sénéchal, Lavertu, Marois, A.-M.S.T., PRL, 2005 Kancharla, Civelli, Capone, Kyung, Sénéchal, Kotliar, A-M.S.T. cond-mat/

52 Conclusion Normal state (pseudogap in ARPES) –Strong and weak coupling mechanism for pseudogap. –CPT, TPSC, slave bosons suggests U ~ 6t near optimal doping for e-doped with slight variations of U with doping. U=5.75 U=6.25

53 Conclusion The Physics of High-temperature superconductors d-wave) is in the Hubbard model (with a very high probability). We are beginning to know how to squeeze it out of the model! Insight from other compounds Numerical solutions … DCA (Jarrell, Maier) Variational QMC (Paramekanti, Randeria, Trivedi). Role of mean-field theories (if possible) : Physics Lot more work to do.

54 Conclusion, open problems Methodology: –Response functions –T c (DCA + TPSC) –Variational principle –First principles –…–… Questions: –Why not 3d? –Best « mean-field » approach. –Manifestations of mechanism –Frustration vs nesting

55 Bumsoo Kyung Sarma Kancharla Marc-André Marois Pierre-Luc Lavertu David Sénéchal

56 Outside collaborators Gabi Kotliar Marcello Civelli Massimo Capone

57 Mammouth, série

58 André-Marie Tremblay Sponsors:

59 Recent review articles A.-M.S. Tremblay, B. Kyung et D. Sénéchal, Low Temperature Physics (Fizika Nizkikh Temperatur), 32,561 (2006). T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod. Phys. 77, 1027 (2005) G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C.A. Marianetti, cond-mat/ v1 3 Nov 2005

60 C’est fini… enfin C’est fini… Merci

61 MDC in CDMFT Kancharla, Civelli, Capone, Kyung, Sénéchal, Kotliar, A-M.S.T. cond-mat/ Ronning et al. PRB % 10% 4% Armitage et al. PRL % 7% t’ = -0.3 t, t’’ = 0 t U = 8t

62 AF and dSC order parameters, U = 8t, for various sizes dSC Sénéchal, Lavertu, Marois, A.-M.S.T., PRL, 2005 AF t’ = -0.3 t t’’ = 0.2t U = 8t Aichhorn, Arrigoni, Potthoff, Hanke, cond-mat/

63 Hole-doped (17%) t’ = -0.3t t”= 0.2t  = 0.12t  = 0.4t Sénéchal, AMT, PRL 92, (2004).

64 Hole-doped 17%, U=8t

65 Electron-doped (17%) t’ = -0.3t t”= 0.2t  = 0.12t  = 0.4t Sénéchal, AMT, PRL in press

66 Electron-doped, 17%, U=8t