Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1,

Slides:



Advertisements
Similar presentations
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Advertisements

APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Quantum-limited measurements: One physicist’s crooked path from quantum optics to quantum information I.Introduction II.Squeezed states and optical interferometry.
Quantum dynamics and quantum control of spins in diamond Viatcheslav Dobrovitski Ames Laboratory US DOE, Iowa State University Works done in collaboration.
From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.
Experimental quantum estimation using NMR Diogo de Oliveira Soares Pinto Instituto de Física de São Carlos Universidade de São Paulo
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
Q UANTUM M ETROLOGY IN R EALISTIC S CENARIOS Janek Kolodynski Faculty of Physics, University of Warsaw, Poland PART I – Q UANTUM M ETROLOGY WITH U NCORRELATED.
Next generation nonclassical light sources for gravitational wave detectors Stefan Ast, Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina Vollmer,
Displaced-photon counting for coherent optical communication Shuro Izumi.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
Complexity and Disorder at Ultra-Low Temperatures 30th Annual Conference of LANL Center for Nonlinear Studies SantaFe, 2010 June 25 Quantum metrology:
Quantum Oracles Jesse Dhillon, Ben Schmid, & Lin Xu CS/Phys C191 Final Project December 1, 2005.
Single-ion Quantum Lock-in Amplifier
STUDY OF CORRELATIONS AND NON-MARKOVIANITY IN DEPHASING OPEN QUANTUM SYSTEMS Università degli Studi di Milano Giacomo GUARNIERI Supervisor: Bassano VACCHINI.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
Where, Nageswaran Rajendran and Dieter Suter, Institutes for Physics, University of Dortmund, Dortmund, Germany Geometric Phases for Mixed States.
Dynamical decoupling in solids
Fundamental gravitational limitations to quantum computing Rafael A. Porto (Carnegie Mellon U. & University of the Republic, Uruguay.) In collaboration.
Imperial College London Institute for Mathematical Sciences & Quantum Optics and Laser Science Group Blackett Laboratory Imperial College London
Memory Effect in Spin Chains Entanglement Distribution 12N Spin chains can be used as a channel for short distance quantum communication [1]. The basic.
White Light Cavity Ideas and General Sensitivity Limits Haixing Miao Summarizing researches by several LSC groups GWADW 2015, Alaska University of Birmingham.
Quantum metrology: dynamics vs. entang lement I.Introduction II.Ramsey interferometry and cat states III.Quantum and classical resources IV.Quantum information.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 5 (2/3/2014) Slide Introduction to Quantum Optics &
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
CENTER FOR NONLINEAR AND COMPLEX SYSTEMS Giulio Casati - Istituto Nazionale di Fisica della Materia, and Universita’ dell’Insubria -National University.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
Lecture note 8: Quantum Algorithms
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Coherence and Decoherence on fundamental sensitivity limits of quantum probes in metrology and computation R. Demkowicz-Dobrzański 1, K. Banaszek 1, J.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
Quantum signal processing Aram Harrow UW Computer Science & Engineering
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
Build Your Own Quantum Computer for Fun and Profit!
Circadian Rhythms 안용열 ( 물리학과 ). Index Intro - What is the circadian rhythm? Mechanism in reality How can we understand it?  Nonlinear dynamics –Limit.
The Classically Enhanced Father Protocol
Quantum Entanglement and Distillation in Information Processing Shao-Ming Fei
Entanglement in Quantum Information Processing Samuel L. Braunstein University of York 25 April, 2004 Les Houches.
Using entanglement against noise in quantum metrology
Cloning of quantum states Rafał Demkowicz-Dobrzański IFT UW.
Quantum info tools & toys for quantum gravity LOOPS `05 Daniel Terno Perimeter Institute.
Indefinite causal order in quantum mechanics Faculty of Physics, University of Vienna & Institute for Quantum Optics and Quantum Information, Vienna Mateus.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Jarzyna 1, K. Banaszek.
When are Correlations Quantum?: Verification and Quantification of Entanglement with simple measurements Imperial College London Martin B Plenio Koenraad.
Quantum metrology: dynamics vs. entanglement
Quantum Computation Stephen Jordan. Church-Turing Thesis ● Weak Form: Anything we would regard as “computable” can be computed by a Turing machine. ●
Prebunching electron beam and its smearing due to ISR-induced energy diffusion Nikolai Yampolsky Los Alamos National Laboratory Fermilab; February 24,
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
QND, LSC / Virgo Collaboration Meeting, 2007, HannoverH. Müller-Ebhardt Entanglement between test masses Helge Müller-Ebhardt, Henning Rehbein, Kentaro.
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański, M. Markiewicz Faculty of Physics, University.
Metrology and integrated optics Geoff Pryde Griffith University.
Role of entanglement in extracting information on quantum processes
Improving Measurement Precision with Weak Measurements
Matrix Product States in Quantum Metrology
Fundamental bounds on stability of atomic clocks
M. Stobińska1, F. Töppel2, P. Sekatski3,
the illusion of the Heisenberg scaling
Linear Quantum Error Correction
Detector of “Schrödinger’s Cat” States of Light
Outline Device & setup Initialization and read out
The Grand Unified Theory of Quantum Metrology
The Grand Unified Theory of Quantum Metrology
Quantum computation using two component Bose-Einstein condensates
INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION
Presentation transcript:

Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Markiewicz, M. Guta 2, K. Macieszczak 1,2, R. Schnabel 3, M. Fraas 4, L. Maccone 5, 1 Faculty of Physics, University of Warsaw, Poland 2 School of Mathematical Sciences, University of Nottingham, United Kingdom 3 Max-Planck-Institut fur Gravitationsphysik, Hannover, Germany 4 Theoretische Physik, ETH Zurich, Switzerland 5 Universit`a di Pavia, Italy.

Entanglement-enhanced metrology Quantum Fisher Information

Entanglement-enhanced metrology quadratic precision enhancement

Coherence will also do… If the number of channel uses is a resource, entanglement is useless V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, (2006). The most general scheme (adaptive, ancilla assisted)…

Frequency vs phase estimation Estimate frequnecy, for total interrogation time T Quantum gain thanks to a coherent evolution

Just as in the Grover algorithm Number of oracle calls to find the distinguished state: Quadratic enhancement just as in metrology

Continuous version of the Grover algorithm Total interrogation time required Interrogation time required reduced as in metrology

Grover and Metrology two sides of the same coin Under total interrogation time T fixed

Limit on how fast probe states can become distinguishable? Bures distance: By triangle inequality: reference state Fix oracle index x

What Grover needs… Final states should be distinguishable Probe needs to be sensitive to all oracles simultaneously !!! We know that too week Grover is optimal

Impact of decoherence

Frequency estimation under dephasing noise Fundamental bound on Quantum Fisher Information (parallel setting) B. M. Escher, R. L. de Matos Filho, L. Davidovich Nature Phys. 7, 406–411 (2011) RDD, J. Kolodynski, M. Guta, Nature Communications 3, 1063 (2012) (Valid also for most general adaptive strategy!) RDD, L. Maccone Phys. Rev. Lett. 113, (2014)

Proof of the bound Then by Quantum Fisher Information of nonincreasing under CP maps we have: = If we can simmulate evolution of the channel (locally) by changing mixing porbabilities…

Proof of the bound Remark: without entanglement we could get: S. Huelga et al. Phys.Rev.Lett. 79, 3865 (1997)

Grover with imperfect oracles dephasing in M dimensional space – all off-diagonal elements multiplied by conjecture Grover quadratic speed-up lost RDD, M. Markiewicz, arXiv: (2014)

Summary Quantum metrological bounds Quantum computing speed-up limits GW detectors sensitivity limits Atomic-clocks stability limits Review paper:Quantum limits in optical interferometry, RDD, M.Jarzyna, J. Kolodynski,arXiv: (2014) work in progress…. RDD, K. Banaszek, R. Schnabel, Phys. Rev. A 88, (R) (2013) RDD, M. Markiewicz, arXiv: (2014)