The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline: FAIR: future center for nuclear and hadron physics in Europe Compressed Baryonic Matter: physics and observables Technical challenges, time lines... Peter Senger
SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV Structure of Nuclei far from Stability Cooled antiproton beams up to 15 GeV: Charmonium Spectroscopy, Search for glueballs and hybrids, Hypernuclear physics,... Compressed Baryonic Matter The FAIR layout Key features: Generation of intense, high-quality secondary beams of rare isotopes and antiprotons. Two rings: simultaneous beams. Ion and Laser Induced Plasmas: High Energy Density in Matter
States of strongly interacting matter baryons hadrons partons Compression + heating = quark-gluon plasma (pion production) Neutron stars Early universe
Exploring the phase diagram of strongly interacting matter CERN-SPS, RHIC, LHC: high temperature, low baryon density GSI SIS300: moderate temperature, high baryon density
The critical end point Ejiri et al. Fodor-Katz Cross over 1st order transition Mapping the QCD phase diagram with heavy-ion collisions CBM physics: exploring the high density region of the QCD phase diagram. Search for restoration of chiral symmetry partonic matter at large μ B critical endpoint Dense baryon- dominated matter Meson- dominated matter
B 3-8 0, T 130 MeV Fundamental questions: Equation-of-state at high densities: supernova dynamics, stability of neutron stars In-medium hadron properties: chiral symmetry restoration, origin of hadron masses? deconfinement
Diagnostic probes
CBM physics topics and observables 1. In-medium modifications of hadrons onset of chiral symmetry restoration at high B measure: , , e + e - open charm (D mesons) 2. Strangeness in matter (strange matter?) enhanced strangeness production ? measure: K, , , , 3. Indications for deconfinement at high B anomalous charmonium suppression ? measure: J/ , D softening of EOS measure flow excitation function 4. Critical point event-by-event fluctuations 5. Color superconductivity precursor effects ?
p n ++ K e+e+ e-e- p Looking into the fireball … … using penetrating probes: short-lived vector mesons decaying into electron-positron pairs
Invariant mass of electron-positron pairs from Pb+Au at 40 AGeV CERES Collaboration S. Damjanovic and K. Filimonov, nucl-ex/ ≈185 pairs!
Statistical hadron gas model P. Braun-Munzinger et al. Nucl. Phys. A 697 (2002) 902 Experimental situation : Strangeness enhancement ? Experimental situation : Strangeness production in central Au+Au and Pb+Pb collisions New results from NA49 (CERN Courier Oct. 2003) SIS SIS
central collisions 25 AGeV Au+Au 158 AGeV Pb+Pb J/ multiplicity 1.5· ·10 -3 beam intensity 1·10 9 /s 2·10 7 /s interactions 1·10 7 /s (1%) 2·10 6 /s (10%) central collisions 1·10 6 /s 2·10 5 /s J/ rate 15/s 200/s 6% J/ e + e - ( + - ) 0.9/s 12/s spill fraction acceptance 0.25 0.1 J/ measured 0.17/s 0.3/s 1·10 5 /week 1.8·10 5 /week J/ experiments: a count rate estimate E lab [GeV]
Charmed mesons Some hadronic decay modes D (c = 317 m): D + K 0 + (2.9 0.26%) D + K - + + (9 0.6%) D 0 (c = m): D 0 K - + (3.9 0.09%) D 0 K - + + - (7.6 0.4%) D meson production in pN collisions Measure displaced vertex with resolution of 30 μm !
Experimental challenges 10 7 Au+Au reactions/sec (beam intensities up to 10 9 ions/sec, 1 % interaction target) determination of (displaced) vertices with high resolution ( 30 m) identification of electrons and hadrons Central Au+Au collision at 25 AGeV: URQMD + GEANT4 160 p 400 + 44 K + 13 K -
The CBM Experiment Radiation hard Silicon pixel/strip detectors in a magnetic dipole field Electron detectors: RICH & TRD & ECAL: pion suppression up to 10 5 Hadron identification: RPC, RICH Measurement of photons, π 0, η, and muons: electromagn. calorimeter (ECAL) High speed data acquisition and trigger system
CBM Collaboration : 39 institutions, 14 countries Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ., Kiev Univ. of Kharkov Hungaria: KFKI Budapest Eötvös Univ. Budapest Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest
FAIR cost (M€) Total: 675 Buildings: SIS100: 70.1 SIS200: 39.6 Coll. Ring: 45.0 NESR: 40.0 HESR: 45.0 e-ring: 15.0 Beamlines: 21.0 Cryo, etc: 44.1 SFRS: 40.7 CBM: 27.0 AP: 8.7 Plasma phys.: 8.0 p-linac: 10.0 PANDA: 28.4 pbar targ.: 6.9 FAIR milestones Oct : Submission of the Conceptual Design Report Nov. 2002: Positive evaluation report of the German science council Feb. 2003: Project approved by the German federal government (170 M€ foreign contributions requested) Jan. 2004: Letters of intent submitted Feb. 2004: 1. Meeting of Internat. Steering Committee (12 nations) June 2004: Evaluation of the LOI,s by PACs Jan 2005: Submission of Technical Reports
SIS18 Upgrade 70 MW Connection Proton-Linac TDM # SIS100 Transfer Line SIS18-SIS100 High Energy Beam Lines RIB Prod.-Target, Super-FRS RIB High+Low Energy Branch Antiproton Prod.-Target CR-Complex HESR & 4 MV e - –Cooling NESR SIS200* 8 MV e - –Cooling e-A Collider SIS100/200 Tunnel, SIS Injection+Extraction+Transfer Transfer Buildings/Line Super-FRS, Auxiliary Bldgs., Transfer Tunnel to SIS18, Building APT, Super-FRS, CR-Complex RIB High+Low Energy Branch, HESR ( ground level), NESR, AP-cave, e-A Collider, PP-cave CBM-Cave, Pbar-Cave, Reinjection SIS100 Civil Construction Civil Construction 1 Civil Construction 3 Civil Construction 2 Civil Construction 4 I IV III V II Concept for staged Construction of FAIR 2,7x10 11 /s 238 U 28+ (200 MeV/u) 5x10 12 protons per puls 1x10 11 /s 238 U 28+ ( GeV/u) ->RIB (50% duty cycle) 2.5x10 13 p (1-30 GeV) 3-30 GeV pbar->fixed target 10.7 GeV/u 238 U -> HADES* 1x10 12 /s 238 U % duty cycle pbar cooled p (1-90 GeV) 35 GeV/u 238 U 92+ NESR physics plasma physics Experiment Potential # Construction Tunnel Drilling Machine General Planning Civil ConstructionProduction and Installation *SIS200 installation during SIS100 shut down
MIMOSA IV IReS / LEPSI Strasbourg Design of a Silicon Pixel detector Design goals: low materal budget: d < 200 μm single hit resolution < 20 μm radiation hard (dose neq/cm 2 ) fast read out Silicon Tracking System: 7 planar layers of pixels/strips. Vertex tracking by two first pixel layers at 5 cm and 10 cm downstream target Roadmap: R&D on Monolithic Active Pixel Sensors (MAPS) pitch 20 μm thickness below 100 μm single hit resolution : 3 μm Problem: radiation hardness and readout speed Fallback solution: Hybrid detectors
Hit rates for 10 7 minimum bias Au+Au collisions at 25 AGeV: Experimental conditions Rates of > 10 kHz/cm 2 in large part of detectors ! main thrust of our detector design studies
Design of a high rate RPC Design goals: Time resolution ≤ 80 ps High rate capability up to 25 kHz/cm2 Efficiency > 95 % Large area 150 m2 Long term stability Prototype test: detector with plastic electrodes (resistivity 10 9 Ohm cm.) P. Fonte, Coimbra
“Trajectories” (3 fluid hydro) Hadron gas EOS Ivanov & Toneev Calculations reproduce freeze-out conditions 30 AGeV trajectory close to the critical endpoint
Mapping the QCD phase diagram with heavy-ion collisions B 6 0 B 0.3 0 baryon density: B 4 ( mT/2 ) 3/2 x [exp(( B -m)/T) - exp((- B -m)/T)] baryons - antibaryons P. Braun-Munzinger SIS300 C. R. Allton et al, hep-lat Lattice QCD : maximal baryon number density fluctuations at T C for q = T C ( B 500 MeV)
Observables: p, , K, , , , , , , , D, J / (3-diff. cross sect., correlations, dileptonic decays) exotica: strange clusters, pentaquarks, … The experimental program of CBM: Collision systems: A+A collisions from 8 to 45 (35) AGeV, Z/A=0.5 (0.4) p+A collisions from 8 to 90 GeV p+p collisions from 8 to 90 GeV Beam energies up to 8 AGeV: HADES Accelerator performance: Beam energy sufficient to create high densities High beam intensity and duty cycle, Excellent beam quality, High availability
Design of a fast TRD Design goals: e/π discrimination of > 100 (p > 1 GeV/c) High rate capability up to 150 kHz/cm 2 Position resolution of about 200 μm Large area ( 500 m 2, 9 layers) Roadmap: Outer part: ALICE TRD Inner part: GEM/MICROMEGAS readout chambers Straw tube TRT (ATLAS) Fast read-out electronics
EU FP6 Hadron Physics (2004 – 2006) Joint Research Projects (approved): Fast gaseous detectors Partner: INVENTOR, Krakow Advanced TOF Systems Future DAQ and trigger systems (Silesia Univ. Katowice, Univ. Warszawa) Network activities (approved): CBMnet (Silesia Univ. Katowice, Univ. Krakow, Univ. Warszawa) CBM Participation in EU Programmes: INTAS-GSI ( ) approved projects: Transition Radiation Detectors Straw tube tracker (Univ. Tech. Warszawa) Resistive Plate Chambers Electromagnetic calorimeter (Univ. Krakow) New call EU FP6 (opened Nov.03, closed Mar04): Design of new facilities Construction of new facilities
CBM R&D working packages Feasibility, Simulations D Kπ(π) GSI Darmstadt, Czech Acad. Sci., Rez Techn. Univ. Prague ,ω, e + e - Univ. Krakow JINR-LHE Dubna J/ψ e + e - INR Moscow Hadron ID Heidelberg Univ, Warsaw Univ. Kiev Univ. NIPNE Bucharest INR Moscow GEANT4: GSI Tracking KIP Univ. Heidelberg Univ. Mannheim JINR-LHE Dubna Design & construction of detectors Silicon Pixel IReS Strasbourg Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Univ. Krakow Silicon Strip SINP Moscow State U. CKBM St. Petersburg KRI St. Petersburg RPC-TOF LIP Coimbra, Univ. Santiago de Com., Univ. Heidelberg, GSI Darmstadt, Warsaw Univ. NIPNE Bucharest INR Moscow FZ Rossendorf IHEP Protvino ITEP Moscow Fast TRD JINR-LHE, Dubna GSI Darmstadt, Univ. Münster INFN Frascati Straw tubes JINR-LPP, Dubna FZ Rossendorf FZ Jülich Tech. Univ. Warsaw ECAL ITEP Moscow GSI Darmstadt Univ. Krakow RICH IHEP Protvino GSI Darmstadt Trigger, DAQ KIP Univ. Heidelberg Univ. Mannheim GSI Darmstadt JINR-LIT, Dubna Univ. Bergen KFKI Budapest Silesia Univ. Katowice Univ. Warsaw Magnet JINR-LHE, Dubna GSI Darmstadt Analysis GSI Darmstadt, Heidelberg Univ, Data Acquis., Analysis
Mapping the QCD phase diagram with heavy-ion collisions B 6 0 B 0.3 0 Net baryon density: B 4 ( mT/2 ) 3/2 x [exp(( B -m)/T) - exp((- B -m)/T)] baryons - antibaryons P. Braun-Munzinger SIS300
The Compressed Baryonic Matter Experiment CBM Collaboration: 38 institutions from 15 countries Letter of Intent submitted January 2004 Challenges: 10 7 Au+Au reactions/sec (300 – 800 charged particles per event) determination of (displaced) vertices with high resolution ( 30 m) identification of hadrons and electrons