Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 1 LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy.

Slides:



Advertisements
Similar presentations
March 1, 2013GRETINA workshop Coulomb excitation of even Ru and Mo isotopes Juho Rissanen Nuclear Structure Group, Lawrence Berkeley.
Advertisements

Study of plastic scintillators for fast neutron measurements
Measurement of 40 Ar(n,p) reaction and neutron capture on 40 Ar and 136 Xe TUNL and Duke Univ. Megha Bhike and Werner Tornow Duke University and Triangle.
Contributions to Nuclear Data by Radiochemistry Division, BARC
Experimental Determination of Neutron Cross Sections of Yttrium by Activation Method by Barbara Geier Supervisors: Assoc. Prof Dr. Wolfgang Sprengel RNDr.
G. Perdikakis1,2, C. T. Papadopoulos1, R. Vlastou1, A. Lagoyannis2, A
Search for spontaneous muon emission from lead nuclei with OPERA bricks M. Giorgini, V. Popa Bologna Group OPERA Collaboration Meeting, LNGS, 19-22/05/2003.
Nuclear structure information from cross section measurements A.Negret, C. Borcea, A. Olacel Horia Hulubei National Institute for Physics and Nuclear Engineering,
Lawrence Livermore National Laboratory Using Nuclear Resonance Fluorescence to Isotopically Map Containers Micah S Johnson, D.P. McNabb This work performed.
A. Dokhane, PHYS487, KSU, 2008 Chapter2- Nuclear Fission 1 Lecture 3 Nuclear Fission.
N_TOF fission data of interest for ADS
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
Precise neutron inelastic cross section measurements A.Negret 1 1 “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest, ROMANIA.
Measurements of cross-sections of neutron threshold reactions and their usage in high energy neutron measurements Ondřej Svoboda Nuclear Physics Institute,
Reactor Antineutrino Anomaly
Background Subtraction in Next Generation 0  Experiments Double-Beta Decay Challenges in 0  Decay Detection Small 0νββ decay half-life leads to low.
E.Chiaveri on behalf of the n_TOF Collaboration n_TOF Collaboration/Collaboration Board Lisbon, 13/15 December 2011 Proposal for Experimental Area 2(EAR-2)
Some fission yields for 235U (n,f), 239Pu (n,f), 238U (n,f) reactions in ΣΣ neutron spectrum Dr. Cristina Garlea National Institute for R&D of Physics.
The polar experience: IGISOL proposal I77, study of the beta decay of 102,104,105 Tc by means of the total absorption technique A. Algora IFIC-Univ. Valencia.
Futoshi Minato JAEA Nuclear Data Center, Tokai Theoretical calculations of beta-delayed neutrons and sensitivity analyses 1.
New methods to measure the cross sections of 12 C+ 12 C fusion reaction Xiao Fang Department of Physics University of Notre Dame.
Measurements of Neutron Activation of 76 Ge and 136 Xe James Esterline Megha Bhike, Josh Bradt, Brent Fallin, Sean Finch, Matt Gooden, Calvin Howell, John.
TUNL Contributions in the US Nuclear Data Program Nuclear Structure Data Evaluation Program J.H. Kelley (USNDP Structure Group Leader), Jim Purcell, and.
Beatriz Jurado, Karl-Heinz Schmidt CENBG, Bordeaux, France Supported by EFNUDAT, ERINDA and NEA The GEneral Fission code (GEF) Motivation: Accurate and.
A Tale of the Three Cities Prelude to the Long Range Plan It was the best of times, it was the worst of times, it was the age of wisdom, it was the age.
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
INDIRECT DETERMINATION OF NEUTRON CAPTURE CROSS SECTIONS ON SPHERICAL AND NEAR-SPHERICAL NUCLEI USING THE SURROGATE METHOD Bethany L. Goldblum Berkeley.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
139 Ba decay: precise half-life measurement and gamma-spectroscopy at BARC: an offshoot of ENSDF evaluation work. P.K.Joshi Homi Bhabha Centre for Science.
Studies of neutron cross-sections by activation method in Nuclear Physics Institute Řež and in The Svedberg Laboratory Uppsala and experimental determination.
Anti-neutrinos Spectra from Nuclear Reactors Alejandro Sonzogni National Nuclear Data Center.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
In-beam performance of AGATA-DEMONSTRATOR Ideas for the firsts commissioning experiments of the AGATA-DEMONSTRATOR campaign at LNL-Legnaro F. Recchia INFN-LNL.
NNSA Synergistic Activities at TUNL The Triangle Universities Nuclear Lab is developing excellent facilities for studying (n, xn  ) reactions. Resources.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
The Astrophysical 187 Re/ 187 Os Ratio: First Direct Measurement of the 187 Re(n, 2nγ) 186m Re Destruction Cross Section J. H. Kelley, NC State U. and.
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Cross-sections of Neutron Threshold Reactions Studied by Activation Method Nuclear Physics Institute, Academy of Sciences of Czech Republic Department.
Production & Measurement of Thermal Neutron at RCNP Chhom Sakborey Nguyen Thi Duyen An Tran Hoai Nam Li Chunjuan Wang Mian.
ThEC13, Geneva, 28th-31st Oct., 2013 C. H. Pyeon, Kyoto Univ. 1 Cheolho Pyeon Research Reactor Institute, Kyoto University, Japan
Lawrence Livermore National Laboratory Nicholas Scielzo Physics Division, Physical and Life Sciences LLNL-PRES Lawrence Livermore National Laboratory,
Fission cross sections and the dynamics of the fission process F. -J
Neutron Capture Cross Sections from 1 MeV to 2 MeV by Activation Measurements Korea Institutes of Geoscience and Mineral Resource G.D.Kim, T.K.Yang, Y.S.Kim,
Background Subtraction in Next Generation 0  Experiments Double-Beta Decay Challenges in 0  Decay Detection Benjamin Spaun Whitworth College Advisors:
Neutron production in Pb/U assembly irradiated by deuterons at 1.6 and 2.52 GeV Ondřej Svoboda Nuclear Physics Institute, Academy of Sciences of Czech.
ObservedChannel181Hf180Hf(n,γ)181Hf180mHf180Hf(n,n')180mHf179m2Hf180Hf(n,2n)179m2Hf179Hf(n,n')179m2Hf175Hf176Hf(n,2n)175Hf173Hf174Hf(n,2n)173Hf The Astrophysical.
Non-equilibrium Antineutrino spectrum from a Nuclear reactor We consider the evolution of the reactor antineutrino energy spectrum during the periods of.
48 Ti(n, xnyp  ) reaction cross sections using spallation neutrons for E n = 1 to 20 MeV Excitation functions have been measured for the interaction of.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
NPA5, Eilat 7/4/20117/4/2011 Apparatus for intense 8 Li RIB production experiment at SARAF Phase I Tsviki Y. Hirsh 1.
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
1 Alushta 2016 CROSS SECTION OF THE 66 Zn(n,α) 63 Ni REACTION at CROSS SECTION OF THE 66 Zn(n, α) 63 Ni REACTION at E n = 4.0, 5.0 and 6.0 MeV I. Chuprakov,
Three years of cross-section measurements of (n,xn) threshold reactions at TSL Uppsala and NPI Řež O. Svoboda, A. Krása, A. Kugler, M. Majerle, J. Vrzalová,
Report (2) on JPARC/MLF-12B025 Gd(n,  ) experiment TIT, Jan.13, 2014 For MLF-12B025 Collaboration (Okayama and JAEA): Outline 1.Motivation.
Transmutation of 129 I with high energy neutrons produced in spallation reactions induced by protons in massive target V.HENZL Nuclear Physics Institute.
Investigation of the proton-induced reactions on natural molybdenum.
Transmutation of spent nuclear fuel
at TSL high energy neutron facility
Measurement of the fission cross-section of 240Pu and 242Pu at CERN’s n_TOF facility CERN-INTC , INTC-P-280 Spokespersons: M. Calviani (CERN),
Cross-section Measurements of (n,xn) Threshold Reactions
Transmutation of 129I with high energy neutrons produced in spallation reactions induced by protons in massive target V. HENZL1,*, D. HENZLOVA1, A. KUGLER1,
Sr-84 0n EC/b+ decay search with SrCl2 crystal
Susan Hogle, Julie G. Ezold
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Triangle Universities Nuclear Laboratory
1. Introduction Secondary Heavy charged particle (fragment) production
Measurement of the 187Re(n,2n)186mRe Destruction Cross Section
Triangle Universities Nuclear Laboratory
O. Svoboda, A. Krása, A. Kugler, M. Majerle, J. Vrzalová, V. Wagner
Presentation transcript:

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 1 LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA Lawrence Livermore National Security, LLC TUNL Seminar September 12,

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 2 2 TUNL Duke C. BHATIA M. BHIKE B. FALLIN C. HOWELL W. TORNOW N.C. State Univ. M. GOODEN J. KELLEY LLNL J. BECKER R. HENDERSON J. KENNEALLY R. MACRI C. RYAN S. SHEETS M. STOYER A. TONCHEV LANL C. ARNOLD E. BOND T. BREDEWEG M. FOWLER W. MOODY R. RUNDBERG G. RUSEV D. VIEIRA J. WILHEMY Acknowledgements

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 3 1.Motivation 1.Energy Dependence of Fission-Product Yields 2.Experimental technique 3.Results 4.Future plans

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 4  Resolve the long-standing difference between LLNL and LANL with respect to selected fission product data  Joint LANL/LLNL fission product review panel endorsed a possible energy dependence of 239 Pu(n,f) 147 Nd fission product yield with fission neutrons: 4.7%/MeV from 0.2 to 1.9 MeV (M. Chadwick) 3.2%/MeV from 0.2 to 1.9 MeV (I. Thompson)  Mostly low energy data from critical assembly or fast reactors 239 Pu(n,f) 147 Nd M.B. Chadwick et al. Nuclear Data Sheets 111 (2010) 2923; H.D Selby et al. Nuclear Data Sheets 111 (2010) P. Baisden et al, LLNL-TR , 2010; R. Henderson et al. LLNL-TR DRAFT; I. Tompson et al. Nucl. Sci. Eng. 171, 85 (2012) There are no 147 Nd data between 1.9 and 14 MeV  Very scarce experimental data at the MeV- range  Large discrepancy (~20%) at 14 MeV

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 5 Scission point % KE Prompt n-emission Prompt  -emission Beta decay, delayed n,  Credit: Encyclopædia Britannica, Inc Saddle point Distance between fragments (cm) time (s)

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 6 Pre-actinides ((e.g.W,Au,Pb,Bi) Heavy (Es to Lr) Medium (U to Cf) Asymmetric Symmetric Light (Th, Pa ) Triple humped

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 7  Y i E (A) = fractional yields of mass chain ‘A’ (after  decays) from initial actinide ‘i’ for neutron energy ‘E’.  How does the asymmetry evolve with neutron energy for 235,238 U, 239 Pu? Depends on actinideDepends on neutron energy Goal: Develop high-precision FPY energy dependence from 1 to 15 MeV

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 8 DENIS source FN TANDEM 10MV Shielded neutron source area 2 H(d,n) 3 He; Monoenergetic neutrons: 4.0 – 7.7 MeV 3 H(p,n) 3 He; Monoenergetic neutrons: 0.5 – 7.7 MeV Quasi-monoenergetic neutrons 7 Li(p,n) 7 Be; Monoenergetic neutrons: 0.1 – 0.65 MeV 3 H(d,n) 4 He; Monoenergetic neutrons: 14.8 – 20.5 MeV

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 9

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 10 2 H gas From VdG accelerator p or d n One thick target ~0.2 g/cm 2 Two thin targets ~10 μg/cm 2 Dual fission chamber n-detector

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 11 Fission_counts = m f  σ n,f ε f t f Gamma_counts ( 147 Nd) = m γ  σ n,f FPY I γ ε γ t γ m γ ( m f ) = atoms in the 239 Pu thick (thin) target  = neutron flux (n.cm -2.s -1 ) σ n,f = 239 Pu(n,f) fission cross section (cm 2 ) FPY = fission product yield of 147 Nd per 239 Pu fission I γ = branching ratio of E  ε γ (ε f ) = counter efficiency of  -ray (fission) detection t γ ( t f ) = time factor for irradiation and counting periods of  -ray (fission) (Gamma_count / Fission_count) = (m thick / m thin ) * FPY * C  FPY = (Gamma_count) / Fission_count) * (m thin / m thick ) * C

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 12 Relative FPY Ratio (This is what we have promised) 1. Statistical uncertainties of  -ray peak counts (1-2%) 2. Relative HPGe detector efficiency (1-2% including the fit) Absolute FPY energy dependency: 1.Statistical error of  -ray peak counts (1-3%) 2.Absolute detector efficiency (2% including the fit) 3.Branching ratios (0.2 – 8% ( 147 Nd)) 4.Absolute FC efficiency (3% experimentally, 0.5% simulation) 5.Low energy neutrons (<1%) 6.Neutron fluence rate fluctuation (<0.3%) 7.Efficiency conversion ratio between close and standard geometry (<1%) 8.True coincidence summing (<1%) 9.Random coincidence summing (<0.2%) 10. Sample weight (<0.1%) 11. Self-absorption of  -ray ( %)

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 13  Room returns neutrons – at ToF area  ToF spectrum from neutron and 3 He monitors  Fission chamber design and characteristics

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 14 Region of interest Not desirable events in our measurements

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 15 Reactions studied 115 In(n, n') 115m In 197 Au(n, 2n) 196 Au 27 Al(n,  ) 24 Na 235 U (n, f) 133 I and 135 I Room return neutrons ~ 10 5 times smaller than primary flux on target

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 16  Room returns neutrons – at ToF area  ToF spectrum from neutron and 3 He monitors  Fission chamber design and characteristics

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 17 Neutron and gamma are well separated Break up – Negligible Neutron and gamma are well separated Break up – Negligible

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 18  Room returns neutrons – at ToF area  ToF spectrum from neutron and 3 He monitors  Fission chamber design and characteristics

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 19  Design and fabricate three fission chambers: one for 239 Pu, one for 235 U, and one for 238 U  Dedicated thin (~10 μg/cm 2 ) 235,238 U and 239 Pu foils electroplated on 0.5” titanium backing ★  Dedicated thick ( mg/cm 2 ) 235 U (93.27%) 238 U (99.97%) and 239 Pu (98.4%) targets  Fission chamber efficiency confirmed: 100%, confirmed with activation measurements ★ Made by LANL Gas flow in and out FC gas cell

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 20 Excellent  / fission separation alpha fission

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 21 in cadmium without cadmium 9 MeV / Background neutrons = 150 / 1

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 22 Experimental Results

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 23 FP/ 99 Mo Present Data Present Data Present Data Present Data Gindler 1 et al. LANL 2 Selby et al. Saclay 3 J. Laurec et al. England 4 et al. LANL 5 LLNL 6 Nethaway 4.6 MeV9 MeV14.5 MeV14.8 MeV4.5 MeV MeV 14.7 MeV 14 MeV 14.8 MeV 87 Kr 91 Sr 92 Sr 97 Zr 105 Ru 131 I 132 Te 133 I 140 Ba 142 La 143 Ce 147 Nd 0.21 ± 5.3% 0.52 ± 2.2% 0.56 ± 4.3% 0.96 ± 3.3% 0.96 ± 3.7% ± 5.2% 1.18 ± 5.0% 0.89 ± 3.8% ± 3.9% 0.37 ± 5.1% 0.22 ± 5.3% 0.48 ± 1.4% 0.51 ± 3.7% 0.89 ± 2.9% 0.85 ± 2.2% 0.93 ± 3.3% 0.76 ± 4.0% 1.03 ± 3.5% 0.82 ± 3.0% 0.80 ± 2.1% 0.64 ± 2.6% 0.34 ± 3.9% 0.22 ± 5.5% 0.52 ± 1.4% 0.52 ± 3.7% 0.97 ± 2.1% 0.86 ± 2.0% 1.03 ± 3.0% 0.80 ± 4.0% 1.09 ± 3.9% 0.84 ± 2.3% 0.85 ± 2.0% 0.64 ± 2.3% 0.35 ± 3.2% 0.21 ± 5.3% 0.53 ± 1.8% 0.52 ± 3.8% 0.86 ± 2.7% ± 4.9% 0.88 ± 3.7% 0.85 ± 2.8% 0.90 ± 3.4% ± 4.6% 0.22 ± 4.5% 0.51 ± 4.8% 0.58 ± 6.4% 0.93 ± 0.6% 0.87 ± 6.0% ± 0.7% 1.11 ± 0.6% 0.88 ± 0.6% 0.79 ± 5.9% 0.65 ± 0.6% ± 4.5% ± 4.2% ± 5.2% 0.34 ± 3.5% ± 3.3% ± 3.5% 0.81 ± 4.5% 0.99 ± 6.2% 0.82 ± 3.1% ± 3.2% 0.31 ± 5.2% ± 7.1 % 0.74 ± 6.0 % 0.97 ± 5.2 % 0.61 ± 7.9 % 0.74 ± 5.7 % 0.74 ± 5.8 % ± 6.3 % 0.86 ± 7.1 % ± 7.1% ± 7.1 % ± 7.1 % 1 J.E.Gindler et al. Phys. Rev. C 27 (1983) H.D.Selby et al. Nucl. Data Sheets 111(2010) J. Laurec et al. Nucl. Data Sheets 111(2010) T.R. England and B.F. Rider, LA-UR M. Mac Innes, M.B. Chadwick, and T. Kawano, Nuclear Data Sheets 112 (2011) 3135– D.R.Nethaway and B. Mendoza, Phys. Rev. C 6 (1972) 1827

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 24 FP/ 99 Mo Present Data Present Data Present Data Glendenin et al. 1 ANL Selby et al. 2 LANL Laurec et al. 3 Saclay Maeck mass- spectrometry 4 England et al. 5 Innes et al. 6 LANL Nethaway et al. 7 LLNL 4.6 MeV 9 MeV14.5 MeV3.9 MeV~1.4 MeV14.7 MeV MeV14 MeV 14.8 MeV 238 U 97 Zr 105 Rh 131 I 132 Te 135 Xe 140 Ba 141 Ce 143 Ce 147 Nd 0.86 ± 2.6 % 0.55 ± 3.0 % ± 4.3 % ± 2.9 % ± 3.2 % 0.35 ± 3.5 % 0.85 ± 2.4 % 0.62 ± 3.3 % 0.60 ± 2.7 % 0.74 ± 4.5 % ± 2.8 % ± 3.1 % 0.37 ± 2.8 % 0.97 ± 2.2 % 0.76 ± 3.4 % 0.71 ± 2.2 % 1.18 ± 5.4 % 1.15 ± 3.4 % 0.93 ± 2.5 % 0.88 ± 2.4 % 0.87 ± 2.6 % 0.40 ± 3.5 % 0.94 ± 0.2 % 0.73 ± 0.4 % 0.56 ± 0.2 % 0.82 ± 0.3 % ± 0.5 % ± 0.4 % 0.45 ± 0.4 % ± 3.6 % ± 3.8 % 0.89 ± 3.4 % 0.58 ± 5.0 % 0.70 ± 3.4 % 0.81 ± 4.7 % 0.99 ± 4.8 % 0.79 ± 3.3 % 0.67 ± 3.5 % 0.77 ± 3.2 % 0.34 ± 5.4 % ± 2.4 % ± 1.8 % ± 6.1 % 0.57 ± 14.7 % 0.71 ± 5.6 % 0.82 ± 5.9 % ± 5.9 % 0.75 ± 5.9 % ± 5.6 % 0.88 ± 6.5 % ± 7.2 % ± 7.2 % 0.36 ± 7.0 % 235 U 97 Zr 105 Rh 131 I 132 Te 140 Ba 143 Ce 147 Nd 1.04 ± 4.4 % 0.37 ± 2.5 % ± 4.6 % 0.99 ± 3.6 % 0.93 ± 3.8 % 0.35 ± 4.3 % 1.04 ± 2.4 % 0.39 ± 2.4 % 0.91 ± 3.6 % 1.08 ± 4.2 % 1.05 ± 2.9 % 0.93 ± 3.8 % 0.30 ± 3.0 % 1.02 ± 1.8 % 0.37 ± 1.8 % 0.84 ± 2.4 % 1.10 ± 3.3 % 1.06 ± 2.5 % 0.92 ± 2.6 % 0.38 ± 2.7 % 1.09 ± 0.4 % ± 0.3 % 0.94 ± 0.4 % 1.07 ± 0.4 % 0.86 ± 0.5 % 0.41 ± 0.3 % ± 3.3 % ± 3.4 % 0.98 ± 3.6 % ± 3.3 % 0.81 ± 4.7 % 0.89 ± 3.3 % 0.72 ± 3.3 % 0.30 ± 5.5 % ± 1.4 % ± 1.4 % ± 6.6 % 0.37 ± 6.0 % 0.89 ± 5.8 % 0.81 ± 5.5 % 0.89 ± 5.5 % ± 5.8 % 1 ± 13.9 % ± 10.6 % ± 11.9 % 1 L. E. Glendenin et al. Phys. Rev. C 24 (1981) H. D. Selby et al. Nucl. Data Sheets 111(2010) J. Laurec et al. Nucl. Data Sheets 111(2010) W.J. Maeck et al., ENICO – 1028 (1980). 5 T.R. England and B.F. Rider, LA-UR M. Mac Innes, M.B. Chadwick, and T. Kawano, Nuclear Data Sheets 112 (2011) 3135– D. R. Nethaway and B. Mendoza, Phys. Rev. C 6 (1972) 1827.

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 25

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 26

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 27

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 28

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 29

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 30

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 31

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 32

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 33

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx Our absolute magnitude of the 147 Nd FPY below 2.5 MeV and at 14.5 MeV neutron energies are slightly higher than the predicted values. 2. We can rule out the two low- yield data at 14.8 MeV. 3. The slope of 147 Nd FPY from 4.6 to 14.8 MeV is slightly negative (- 1% / MeV). 4. There is no energy dependence (or it is below our experimental sensitivity) for 140 Ba and 99 Mo fragments. Model calculation ___ Uncertainties ___ J. Lestone. Nuclear Data Sheets 112 (2011) 3120

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 35 Summary We start delivering precise (< 2% relative uncertainty) information on FPY ratios obtained at SIX energies in case of 239 Pu and at FOUR energies for 235 U and 238 U We will deliver accurate (4-5% absolute uncertainty) information on the energy dependent fission product yields covering an energy range from 1 < E n < 15 MeV Potential experiments:  Reduce 147 Nd branching ratio uncertainty from the current 8%  High-accuracy measurements in the 0-2 MeV range to clarify 144 Ce and 147 Nd neutron-energy dependence Strong LLNL-LANL-TUNL Collaborative Effort

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 36

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 37 Further Experiment & Theory Needed Future experiments (2013 – 2015):  Reduce 147 Nd branching ratio uncertainty from the current 8% (submitted LLNL LDRD proposal)  Developing a high-intensive 7 Li(p,n) neutron source at TUNL  High-accuracy measurements in the 0-2 MeV range to clarify 147 Nd neutron- energy dependence using 7 Li(p,n) and 3 H(p,n) reactions  Two measurements at the both sides of the 2 nd chance fission, i.e. E n = 5 and 7 MeV  Thermal measurement at the MIT reactor Potential theory work:  Guidance on shape from onset of 2nd-chance fission

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 38 FragmentE  (keV)'T 1/2 I  % 95 Zr d % Zr h % Rh h % Sb d % I d % I h % Te d 1388 % I h % Xe h 290 % Ba d % Ce d % Ce h % Nd d % 11

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 39

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 40

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 41

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 42

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 43

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 44

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 45

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 46

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 47 1.Precise FPY measurements on 239 Pu, 235 U and 238 U E n = 1.5, 2.6, 4.6, 9.0, 14.5, and 14.8 MeV 2. From September 2011 to April 2013: Total beam on target ~ 1000 hours Funded by NNSA AA (Multiply by ~$300 / h) 3. Counting time at TUNL: more than a year of continuous fission products measurement

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 48 Reducing fission-product  -ray branching-ratio uncertainties 147 Ce Q  =3.4 MeV 56.4 s IY: 1.91% 147 Pr Q  =2.7 MeV 13.4 m IY: 0.18% 147 Nd Q  =0.9 MeV d IY: 0.001%    Produce pure sources using mass- separated CARIBU fission-product beam… (  M/M~10 -4 … only need  M/M~10 -2 ) (10 10 atoms after 1 day) …collaborate with TAMU for high-precision  and  -ray spectroscopy At TAMU, they have a unique HPGe detector laboriously calibrated to ~0.2% for efficiency count  decays with low- threshold 4   counter (~100% efficient for  s) N. Scielzo: ER-LDRD proposal