Excited state spatial distributions in a cold strontium gas Graham Lochead.

Slides:



Advertisements
Similar presentations
Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands CWI Wojciech Burakiewicz Robert van Liere Analyzing Complex FTMS Simulations: a Case Study.
Advertisements

Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Outlines Rabi Oscillations Properties of Rydberg atoms Van Der Waals Force and Rydberg Blockade The implementation of a CNOT gate Preparation of Engtanglement.
First Year Seminar: Strontium Project
Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
Rydberg & plasma physics using
LCLS Atomic Physics with Intense X-rays at LCLS Philip H. Bucksbaum, University of Michigan, Ann Arbor, MI Roger Falcone, University of California, Berkeley,
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
Ultra-Cold Strontium Atoms in a Pyramidal Magneto-Optical Trap A.J. Barker 1, G. Lochead 2, D. Boddy 2, M. P. A. Jones 2 1 Ponteland High School, Newcastle,
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Probing the Rydberg spectrum of strontium – group meeting Probing the Rydberg spectrum of strontium James Millen.
Graham Lochead 07/09/09 Pulsed laser spectroscopy in strontium.
Anderson localization in BECs
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Approaches to Rydberg spatial distribution measurement Graham Lochead 24/01/11.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Graham Lochead YAO 2009 Towards a strontium pyramid MOT Graham Lochead Durham University
A Magneto-Optical Trap for Strontium James Millen A Magneto-Optical Trap for Strontium – Group meeting 29/09/08.
Danielle Boddy Durham University – Atomic & Molecular Physics group Red MOT is on its way to save the day!
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
The story unfolds… James Millen The story unfolds… – Group meeting 12/04/10.
Dipole-dipole interactions in Rydberg states. Outline Strontium experiment overview Routes to blockade Dipole-dipole effects.
Studying our cold Rydberg gas James Millen. Level scheme (5s 2 ) 1 S 0 461nm 32MHz (5s5p) 1 P 1 (5sns) 1 S 0 (5snd) 1 D 2 Continuum ~413nm Studying our.
Rydberg & plasma physics using ultra-cold strontium James Millen Supervisor: Dr. M.P.A. Jones Rydberg & plasma physics using ultra-cold strontium.
Studying a strontium MOT – group meeting Studying a strontium MOT James Millen.
Graham Lochead 19/07/10 Lens setup for Rydberg spatial distribution.
Autoionization of strontium Rydberg states
Excited state spatial distributions Graham Lochead 20/06/11.
A strontium detective story James Millen Strontium detective – Group meeting 19/10/09 Ions‽
Progress on Light Scattering From Degenerate Fermions Seth A. M. Aubin University of Toronto / Thywissen Group May 20, 2006 DAMOP 2006 Work supported by.
Trapped Radioactive Isotopes:  icro-laboratories for fundamental Physics EDM in ground state (I=1/2) H = -(d E + μ B) · I/I m I = 1/2 m I = -1/2 2ω12ω1.
Exploring The Quantum Department of Physics Entering the FreezerThe Age of the Qubit HOTCOLD Quantum properties emerge at extremes of energy. We work with.
H. J. Metcalf, P. Straten, Laser Cooling and Trapping.
ITOH Lab. Hiroaki SAWADA
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
Spin-polarization using ns~fs laser pulses Takashi Nakajima Institute of Advanced Energy Kyoto University
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Controlling Matter with Light Robert J. Gordon University of Illinois at Chicago DUV-FEL Seminar January 6, 2004 NSF, DOE, PRF, UIC/CRB, Motorola.
Accurate density measurement of a cold Rydberg gas via non-collisional two-body process Anne Cournol, Jacques Robert, Pierre Pillet, and Nicolas Vanhaecke.
Using this method, the four wave transition linewidth was measured at several different frequencies of current modulation. The following plot shows the.
Coherent excitation of Rydberg atoms on an atom chip
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Molecular Deceleration Georgios Vasilakis. Outline  Why cold molecules are important  Cooling techniques  Molecular deceleration  Principle  Theory.
W I S S E N T E C H N I K L E I D E N S C H A F T  Januar 13 Name und OE, Eingabe über > Kopf- und Fußzeile.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
Pinning of Fermionic Occupation Numbers Christian Schilling ETH Zürich in collaboration with M.Christandl, D.Ebler, D.Gross Phys. Rev. Lett. 110,
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
Dynamics of Low Density Rydberg Gases Experimental Apparatus E. Brekke, J. O. Day, T. G. Walker University of Wisconsin – Madison Support from NSF and.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Фото MANIPULATING THE QUANTUM STATE OF SINGLE ATOMS AND PHOTONS works of Nobel Laureates in physics 2012 A.V.Masalov Lebedev Physics Institute, RAS, Moscow.
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
Rydberg atoms part 1 Tobias Thiele.
Microwave Transitions Between Pair States Composed of Two Rb Rydberg Atoms Jeonghun Lee Advisor: Tom F. Gallagher Department of Physics, University of.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Resonant dipole-dipole energy transfer
Photon counter with Rydberg atoms
Excitation control of a cold strontium Rydberg gas
Coupled atom-cavity system
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Anomalous broadening of driven Rydberg atoms
Presentation transcript:

Excited state spatial distributions in a cold strontium gas Graham Lochead

Outline Motivation and Rydberg physics Experimental details Rydberg spatial distributions The strontium Rydberg project – April 2012

Strong interactions The strontium Rydberg project – April 2012 E int > E pot,E kin Problem: Correlations make modelling difficult Solution: Simulate in controlled environment

Quantum simulator The strontium Rydberg project – April 2012 Need single site addressability Need strong interactions Weitenberg et al, Nature 471, 319–324 (2011) … …Rydberg atoms

Rydberg properties The strontium Rydberg project – April 2012 n = 5 n = 8 n = 7 n = 6 Ionization limit Properties High principal quantum number n n = 68 n = 67 n = 66 H ~ 0.1 nm n = 100 ~ 1 μ m

Rydberg physics The strontium Rydberg project – April 2012 Strong, controllable interactions

Dipole blockade The strontium Rydberg project – April 2012 Separation Energy One excitation per atom pair when Interaction shift

Experimental blockade The strontium Rydberg project – April 2012 L. Isenhower et al, Phys. Rev. Lett. 104, (2010) Saturation of excitation CNOT gate operation H. Schempp et al, Phys. Rev. Lett. 104, (2010)

Experimental plan The strontium Rydberg project – April 2012

Project aim The strontium Rydberg project – April 2012 Position Column density Excited state Ground state Investigate excited state spatial distributions T. Pohl et al, Phys. Rev. Lett. 104, (2010)

Cold atom setup The strontium Rydberg project – April 2012 Zeeman slowed atomic beam 5 x 10 6 strontium atoms at ~5 mK 2 x 10 9 atoms/cm 3 Rydberg laser locked using EIT R. P. Abel et al, Appl. Phys. Lett. 94, (2009)

Coherent population trapping The strontium Rydberg project – April 2012 Ions detected on MCP Ions Rydberg atoms Sub natural linewidth Control m J 5s 2 5s5p 5sns(d) λ 1 = 461 nm λ 2 = 413 nm

Autoionization The strontium Rydberg project – April s 2 5s5p 5sns(d) 5s Sr + 5pns(d) λ 1 = 461 nm λ 2 = 413 nm λ 3 = 408 nm Resonant ionization Independent of excitation State selective 5s Sr + e-e- J. Millen et al, Phys. Rev. Lett. 105, (2010)

Focusing and translating The strontium Rydberg project – April 2012

Spatial distribution The strontium Rydberg project – April 2012 Focus coupling beam as well Scan one direction along ensemble Ground state from camera image

2D spatial distribution The strontium Rydberg project – April 2012 Ground state Excited state Multiple slices → 2D spatial map

Looking for blockade The strontium Rydberg project – April 2012 Vary density of ground state

Looking for blockade The strontium Rydberg project – April 2012 No blockade so far Denser sample needed → second stage cooling → dipole trap

Summary The strontium Rydberg project – April 2012 Rydberg states have strong interactions Coherently excited cold strontium to Rydberg states Measured excited state spatial distributions

The team The strontium Rydberg project – April 2012 Matt Jones Danielle Boddy Charles Adams Christophe Vaillant Daniel Sadler Me

The strontium Rydberg project – April 2012

Laser stabilization The strontium Rydberg project – April s 2 5s5p 5sns(d) λ 1 = 461 nm λ 2 = 413 nm R. P. Abel et al, Appl. Phys. Lett. 94, (2009)