Pythagoras’ Theorem a 2 + b 2 = c 2 The fundamental theorem every child is forced to learn!

Slides:



Advertisements
Similar presentations
Pythagoras Bingo. Pick 8 from the list C no 16124yes Pythagorean triple Hypotenuse Pythagoras theorem.
Advertisements

Pythagoras Pythagoras was a Greek scholar and philosopher in the late century BC. Known as “the father of numbers, his teachings covered a variety of areas.
Pythagoras Pythagoras was a Greek scholar and philosopher ca 548 BC to 495 BC. Known as “the father of numbers, his teachings covered a variety of areas.
Apply the Pythagorean Theorem Chapter 7.1. Sides of a Right Triangle Hypotenuse – the side of a right triangle opposite the right angle and the longest.
Pythagorean Triples Big Idea:.
Done by 2i3: Jonathan Ng Ong Yan Zhe Gaw Ban Siang Chin Ming Fwu
The Pythagorean Theorem
The Pythagorean Theorem. The Right Triangle A right triangle is a triangle that contains one right angle. A right angle is 90 o Right Angle.
Pythagorean Theorem. Pythagoras Born on the Greek Isle of Samos in the 6 th Century Lived from BC He studied and made contributions in the fields.
Lesson 10.1 The Pythagorean Theorem. The side opposite the right angle is called the hypotenuse. The other two sides are called legs. We use ‘a’ and ‘b’
A b c. Use the Pythagorean Theorem and its converse to solve problems. Objectives.
8-6 The Pythagorean Theorem Pythagorus (say "pie-thag-or-us") of Samos was a Greek philosopher who lived from about 580 BC to about 500 BC. He made important.
Pythagoras was a Greek philosopher who made important developments in mathematics, astronomy, and the theory of music. The theorem now known as Pythagoras's.
9.2 The Pythagorean Theorem
Lessons 9.1 – 9.2 The Pythagorean Theorem & Its Converse
Pythagorean Theorem This project dives into the Pythagorean theorem and its uses. It was developed by Aldo Prado in the Winter of c a b a² + b² =
MAT 115 PROJECT I PYTHAGOREAM THEOREM
History of Pythagoras *Pythagoras was born in Greece, and he did a lot of traveling to Egypt to learn.
Oreški Ivana 779 Osijek  an Ionian Greek philosopher and founder of the religious movement called Pythagoreanism  developed mathematics, astronomy,
Pythagorean Theorum Shaikh albuainain. The Pythagorean theorem has its name derived from the ancient Greek mathematician Pythagoras (569 BC-500 BC). Pythagoras.
THE PYTHAGOREAN THEOREM A 2 + B 2 = C 2. THE PYTHAGOREAN THEOREM LEG A LEG B HYPOTENUSE PARTS OF A RIGHT TRIANGLE.
The Pythagorean Theorem
A b c. Student Expectations 8 th Grade: 8.3.7C Use pictures or models to demonstrate the Pythagorean theorem A Use the Pythagorean theorem to solve.
Geometry Section 9.2 The Pythagorean Theorem. In a right triangle the two sides that form the right angle are called the legs, while the side opposite.
Modeling Pythagorean Theorem - Geometrically. Template.
Bellwork 1) 2) 3) Simplify. Lesson 7.1 Apply the Pythagorean Theorem.
C CHAPTER The Pythagorean Theorem. Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify.
Section 10.3 The Pythagorean Theorem
Pythagorean Theorem. What? Pythagoras was a Greek philosopher and mathematician from around B.C. Although it’s debatable whether he himself or.
Pythagorean Theorem. History of Pythagorean Theorem Review The Pythagorean theorem takes its name from the ancient Greek mathematician Pythagoras (569.
Pythagorean Theorem The best known mathematical proof is named for Pythagoras.
By Emily Bennett 12 The Pythagorean theorem takes its name from the ancient Greek mathematician Pythagoras. (approximately 500 B.C.) Pythagoras himself.
A b c
Pythagorean Theorem By: Kierra Reber period 6 extra credit.
This is a right triangle: We call it a right triangle because it contains a right angle.
Pythagoras Mustafa Sencer AYDIN.
Pythagoras. Pythagoras was a Greek mathematician in 500’s BC. He spent most of his life in Greek colonies in Sicily and southern Italy. He wore simple.
The Pythagorean Theorem and Its Converse OBJECTIVE: To use the Pythagorean Theorem and its converse BIG IDEAS: MEASUREMENT REASONING AND PROOF ESSENTIAL.
Chapter 8-1 Pythagorean Theorem. Objectives  Students will be able to use the Pythagorean and its converse to find lengths in right triangles.
Trigonometry – Right Angled Triangles By the end of this lesson you will be able to identify and calculate the following: 1. Who was Pythagoras 2. What.
Warm up Make a chart in your notes of the perfect squares from 1 to 20. For Example: 1 2 = = 4.
Pythagorean Theorem & its Converse 8 th Grade Math Standards M.8.G.6- Explain a proof of the Pythagorean Theorem and its converse. M.8.G.7 - Apply the.
Warm Up Use what you know about 30, 60, 90 triangles to find the missing sides!
PYTHAGORAS. Who Was Pythagoras? Born about 569 BC in Samos, Ionia Died about 475 BC Greek Philosopher & Mathematician.
6/22/ Types of Triangles  Types by Length Equilateral Isosceles Scalene  Types by Angle Equilateral Right Obtuse Acute Equilateral Right Isosceles.
Pythagoras Sheryl Trembley Math /28/11. Pythagoras - philosopher and mathematician Limited reliable information is available about Pythagoras Lived.
Pythagorean Theorum Xiaoyan Yang 02/28/2015 History of Pythagoras Pythagoras.
Pythagorean theorem.
Warm up
The Pythagorean Theorem
The Pythagorean Theorem c a b.
Pythagorean Theorem.
The Pythagorean Theorem c a b.
Chapter 10 Section 10.1 Pythagorean Theorem.
Pythagorean theorem a b c.
PYTHAGOREAN THEOREM VOCABULARY.
9.2 The Pythagorean Theorem
Objectives/Assignment
Trigonometry Math 10 Ms. Albarico.
Pythagorean Theorem.
Apply the distance and midpoint formula in 3D
PYTHAGOREAN THEOREM VOCABULARY.
The Pythagorean Theorem and Its Converse
9.2 The Pythagorean Theorem
REVIEW LEG HYPOTENUSE LEG.
Pythagorean Theorem.
In a right triangle, the side opposite the right angle is called the hypotenuse. This side is always the longest side of a right triangle. The other.
Presentation transcript:

Pythagoras’ Theorem a 2 + b 2 = c 2 The fundamental theorem every child is forced to learn!

History of the theorem Pythagoras of Samos was a Greek philosopher responsible for many important developments in mathematics! But rumour has it Pythagoras’ Theorem was known to the Babylonians some 1000 years before Pythagoras. However we all believe he was the first person to prove the theorem and that is why the theorem takes his name.

Proofs! Most Proofs Of Pythagoras' Theorem Eleftherios Argryopoulos of Greece, has discovered 520 different proofs of the Pythagorean theorem over a period of 11 years from 1986 to GUINNESS WORLD RECORD Proof without words! If only all proofs were as simple.

The theorem in 3-D Usually denoted a 2 + b 2 + c 2 = d 2, but here d 2 = h 2 You just can’t get the pictures these days! The application of Pythagoras’ Theorem in three dimensions involves the relationship between the perpendicular edges of a rectangular block and the solid diagonal of the same block.

Pythagorean Triples There is a simple formula that gives all the Pythagorean triples. Suppose m and n are two positive integers with m < n. Then the triple can be found: a = n 2 – m 2, b = 2mn, c = n 2 + m 2 This formula gives all the Pythagorean triples! Here are the first few: m = 1, n = 2 gives (3,4,5) m = 1, n = 3 gives (8,6,10) m = 2, n = 3 gives (5,12,13) m = 2, n = 4 gives (12,16,20) and so on… m = 6, n = 10 gives (64,120,136)

Applications On a lighter note, does the theorem have any applications?? It’s main use is in architecture and any form of structural planning By using Pythagoras’ theorem to work out the hypotenuse of a drill you can work out the size of the hole created! You can use the theorem to work out the height of a house or awkward object. Slightly more interesting: a musical harps strings are all angled. When building a harp, if you take each string as a hypotenuse you can work out the correct spacing between each string using the theorem!