THE LYMAN-  FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL Shanghai, 16 March 2005 1.Cosmological significance of the Lyman-  forest 2. LUQAS:

Slides:



Advertisements
Similar presentations
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Advertisements

Tom Theuns Institute for Computational Cosmology, Durham, UK Department of Physics, Antwerp, Belgium Munich 2005 Reionization And the thermal history of.
Metals at Highish Redshift And Large Scale Structures From DLAs to Underdense Regions Patrick Petitjean Institut d’Astrophysique de Paris B. Aracil R.
Matter Content of the Universe David Spergel March 2006 Valencia, Spain.
Cosmological Reionization Nick Gnedin. Co-starring Gayler Harford Katharina Kohler Peter Shaver Mike Shull Massimo Ricotti.
Planck 2013 results, implications for cosmology
1 Cosmological Constraints on Active and Sterile Neutrinos Matteo Viel INAF/OATS & INFN/TS From Majorana to LHC: Workshop on the Origin of Neutrino Mass.
1 A VIEW ON THE MATTER POWER AT MEDIUM SCALES MATTEO VIEL INAF and INFN Trieste COSMOCOMP Trieste – 7 th September 2012.
A hot topic: the 21cm line II Benedetta Ciardi MPA.
Galaxy and Mass Power Spectra Shaun Cole ICC, University of Durham Main Contributors: Ariel Sanchez (Cordoba) Steve Wilkins (Cambridge) Imperial College.
Upper limits on neutrino masses from cosmology: new results Øystein Elgarøy (Institute of theoretical astrophysics, University of Oslo) Collaborator: Ofer.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Theoretical work on Cosmology and Structure Formation Massimo Ricotti.
Observing galaxy cluster simulations with an X-ray telescope Elena Rasia Department of Physics, University of Michigan Chandra Fellows Symposium Harvard-Smithsonian.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
The Baryon Acoustic Peak Nick Cowan UW Astronomy May 2005 Nick Cowan UW Astronomy May 2005.
Simulating the ionisation and metal enrichment history of the Intergalactic Medium Tom Theuns Institute for Computational Cosmology, Durham, UK Department.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
COSMOLOGICAL SPECTROSCOPY OF THE HIGH REDSHIFT UNIVERSE: STATUS & PERSPECTIVES MATTEO VIEL INAF & INFN – Trieste HEIDELBERG JOINT ASTRONOMICAL COLLOQUIUM.
1 Latest Measurements in Cosmology and their Implications Λ. Περιβολαρόπουλος Φυσικό Τμήμα Παν/μιο Κρήτης και Ινστιτούτο Πυρηνικής Φυσικής Κέντρο Ερευνών.
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
Inflation, Expansion, Acceleration Two observed properties of the Universe, homogeneity and isotropy, constitute the Cosmological Principle Manifest in.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University BLOIS, 31 MAY 2012 e    
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
Andrew Fox (ESO-Chile) Jacqueline Bergeron & Patrick Petitjean (IAP-Paris)
Probing inflation, dark matter, dark energy, etc. using the Lyman-  forest Pat McDonald (CITA) Collaborators: Uros Seljak, Anze Slosar, Alexey Makarov,
Different physical properties contribute to the density and temperature perturbation growth. In addition to the mutual gravity of the dark matter and baryons,
WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation March, 2003 Zoltán Haiman.
Neutrinos and the large scale structure
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Current State of Observational Cosmology JPO: Cochin(05/01/04)
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Clustering in the Sloan Digital Sky Survey Bob Nichol (ICG, Portsmouth) Many SDSS Colleagues.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Cosmological Particle Physics Tamara Davis University of Queensland With Signe Riemer-Sørensen, David Parkinson, Chris Blake, and the WiggleZ team.
MATTEO VIEL THE LYMAN-  FOREST AS A COSMOLOGICAL PROBE Contents and structures of the Universe – La Thuile (ITALY), 19 March 2006.
PHY306 1 Modern cosmology 3: The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations.
Observational constraints and cosmological parameters Antony Lewis Institute of Astronomy, Cambridge
Mário Santos1 EoR / 21cm simulations 4 th SKADS Workshop, Lisbon, 2-3 October 2008 Epoch of Reionization / 21cm simulations Mário Santos CENTRA - IST.
Collaborators Blair Savage, Bart Wakker (UW-Madison) Blair Savage, Bart Wakker (UW-Madison) Ken Sembach (STScI) Ken Sembach (STScI) Todd Tripp (UMass)
With: Joop Schaye Leiden (as of last week) Simulation provided by: Tom Theuns, Volker Springel, Lars Hernquist, Scott Kay QSO spectra by: T.-S. Kim, W.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Cosmic shear and intrinsic alignments Rachel Mandelbaum April 2, 2007 Collaborators: Christopher Hirata (IAS), Mustapha Ishak (UT Dallas), Uros Seljak.
Lyman-  quasar spectra as cosmological probes MATTEO VIEL INAF & INFN – Trieste.
1 Astroparticle Physics in Intergalactic Space Matteo Viel – INAF Trieste APP14 – Amsterdam, 24 th June 2014.
Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
Small scale modifications to the power spectrum and 21 cm observations Kathryn Zurek University of Wisconsin, Madison.
The Cosmic Microwave Background
Semi-analytical model of galaxy formation Xi Kang Purple Mountain Observatory, CAS.
Radiative Transfer Simulations The Proximity Effect of LBGs: Antonella Maselli, OAArcetri, Firenze, Italy Collaborators: A.Ferrara, M. Bruscoli, S. Marri.
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
Constraint on Cosmic Reionization from High-z QSO Spectra Hiroi Kumiko Umemura Masayuki Nakamoto Taishi (University of Tsukuba) Mini Workshop.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
MATTEO VIEL STRUCTURE FORMATION INAF and INFN Trieste (Italy) SISSA – 8 th and 11 th March 2011 Lecture 3.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
Cheng Zhao Supervisor: Charling Tao
Michael Murphy Elisa Boera Collaborators: Supervisor : G. Becker J. Bolton.
Gamma-ray emission from warm WIMP annihilation Qiang Yuan Institute of High Energy Physics Collaborated with Xiaojun Bi, Yixian Cao, Jie Liu, Liang Gao,
WMAP Implications for Reionization
Cosmology With The Lyα Forest
Martin Haehnelt, Matteo Viel, Volker Springel
Neutrino Masses in Cosmology
GGI, Florence, 14 September 2006 Julien Lesgourgues (LAPTH, Annecy)
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
Gamma-ray emission from warm WIMP annihilation
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Presentation transcript:

THE LYMAN-  FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL Shanghai, 16 March Cosmological significance of the Lyman-  forest 2. LUQAS: The observational sample 3.Hydro-dynamical simulations of the Lyman-  forest 4.Cosmological parameters – Implications for: inflation, neutrinos, gravitinos, warm dark matter particles With M. Haehnelt, J. Lesgourgues, S. Matarrese, A. Riotto, V. Springel, J. Weller

GOAL: the primordial dark matter power spectrum Tegmark & Zaldarriaga 2002 CMB physics z = 1100 dynamics Ly  physics z < 6 dynamics + termodynamics CMB + Lyman  Long lever arm Constrain spectral index and shape Relation: P FLUX (k) - P MATTER (k) ?? Continuum fitting Temperature, metals, noise

before WMAP Croft et al WMAP Verde et al the WMAP era Tilt in the spectrum n<1 ? Running spectral index dn/dlnk < 0 ?

DM STARS GAS NEUTRAL HYDROGEN  m = 0.26   = 0.74  b = H = 72 km/sec/Mpc - 60 Mpc/h COSMOS computer – DAMTP (Cambridge)

The LUQAS sample -I Kim, MV, Haehnelt, Carswell, Cristiani, 2004, MNRAS, 347, 355 Large sample Uves Qso Absorption Spectra (LP-UVES program P.I. J. Bergeron) high resolution 0.05 Angstrom, high S/N > 50 low redshift, =2.25,  z = Nr. spectra redshift

The LUQAS sample –II systematic errors Effective optical depth = exp (-  eff ) Power spectrum of F/ Low resolution SDSS like spectra High resolution UVES like spectra

Hydro-simulations: scalings T = T 0 ( 1 +  )  Effective optical depth P FLUX (k) = b 2 (k) P MATTER (k) Viel, Haehnelt, Springel, MNRAS, 2004, 354, 684

Hydro-simulations: what have we learnt? Many uncertainties which contribute more or less equally (statistical error is not an issue!) Statistical error4% Systematic errors~ 15 %  eff (z=2.125)=0.17 ± %  eff (z=2.72) = ± %  = 1.3 ± % T 0 = ± K 3 % Method5 % Numerical simulations8 % Further uncertainties5 % ERRORS CONTRIBUTION TO FLUCT. AMPL.

Cosmological implications: combining the forest data with CMB - I n = 1.01 ± 0.02 ± 0.06  8 = 0.93 ± 0.03 ± 0.09 Statistical error Systematic error SDSS Seljak et al MV, Haehnelt, Springel 2004 Note that the flux bispectrum analysis agrees with these values MV, Matarrese, Heavens, Haehnelt, Kim, Springel, Hernquist, 2004

Cosmological implications: combining the forest data with CMB - II SDSS Seljak et al  8 = 0.93 ± 0.07 n=0.99 ± 0.03  8 = 0.90 ± 0.03 n=0.98 ± 0.02 n run = ± n run =-0.033± d n s / d ln k MV, Weller, Haehnelt, MNRAS, 2004, 355, L23

Cosmological implications: constraints on slow-roll inflation - III SDSS Seljak et al r < 0.45 (95% lim.) r = 0.50 ± 0.30 No evidence for gravity waves T/S = T/S V = inflaton potential MV, Weller, Haehnelt, MNRAS, 2004, 355, L23

Cosmological implications: Warm Dark Matter particles-I  CDM WDM 0.5 keV 30 comoving Mpc/h z=3 MV, Lesgourgues, Haehnelt, Matarrese, Riotto, PRD in press k FS ~ 5 T v /T x (m x /1keV) Mpc -1 k FS ~ 1.5 (m x /100eV) h/Mpc In general if light gravitinos Set by relativistic degrees of freedom at decoupling

Cosmological implications: Warm Dark Matter particles-II  WDM  CWDM (gravitino like) Set limits on the scale of Supersymmetry breaking   susy < 260 TeV m WDM > 550 eV > 2keV sterile neutrino < 16 eV gravitino Scale of free streaming  gravitino /  DM

Cosmological implications: constraints on neutrinos  m (eV) = 0.33 ± 0.27 WMAP + 2dF + Lyman- 

HPM simulations of the forest Full hydro 200^3 part. HPM PMGRID=600 HPM PMGRID=400 FLUX POWER

HIGH RESOLUTION HIGH S/N vs LOW RESOLUTION LOW S/N

LUQAS vs SDSS

SUMMARY 1.LUQAS: a unique high resolution view on the Universe at z= Hydro-dynamical simulations of the Lyman-  forest. Systematic Errors? Differences between hydro codes? 3.Cosmological parameters: no fancy things going on  8 = 0.93 n = 1 no running substantial agreement between SDSS and LUQAS but SDSS has smaller error bars not because of the larger sample but because of the different theoretical modelling Constraints on inflationary models, neutrinos and WDM

HPM simulations of the forest-I Gnedin & Hui 1998 equation of motion for gas element if T = T 0 ( 1 +  ) 

Density Temperature No FeedbackFeedback Feedback effects: Galactic winds

Feedback effects: Galactic winds-III Line widths distribution Column density distribution function

Metal enrichment CIV systems at z=3 Strong Feedback  = Role of the UV background Soft background ---- Role of different feedback  =1  =0  =0.1 Mori, Ferrara, Madau 2000; Rauch, Haehnelt, Steinmetz 1996; Schaye et al. 2003

`