Massimo Persic INAF/INFN-Trieste MAGIC Collaboration GeV-TeV prospects & results Issues :  Origin & diffusion properties of Galactic CRs: Main accelerators:

Slides:



Advertisements
Similar presentations
1 st MultiDark Workshop UCM-GAE in MultiDark: Indirect searches for DM with the MAGIC Telescopes Juan Abel Barrio Universidad Complutense de Madrid, January.
Advertisements

The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Longterm X-ray observation of Blazars with MAXI Naoki Isobe (Kyoto University; & MAXI
Supernova remnants and molecular clouds Armand Fiasson LAPP - Annecy-le-vieux.
Supernova HE Francesco Giordano University and INFN Bari Gamma 400 Workshop.
Upper Limit on the Cosmological  - Ray Background Yoshiyuki Inoue (Stanford) Kunihito Ioka (KEK) 1.
TeV blazars and their distance E. Prandini, Padova University & INFN G. Bonnoli, L. Maraschi, M. Mariotti and F. Tavecchio Cosmic Radiation Fields - Sources.
Karsten Berger On behalf of the MAGIC Collaboration.
Blazars as beamlights to probe the EBL Problem: EBL, emitted SED: both unknown ! Aim: measure n EBL (z) at different redshifts  local normalization, cosmic.
Naoki Isobe, Yoshihiro Ueda (Kyoto University) Kousuke Sugimori, Nobuyuki Kawai (Tokyo Tech.) Hitishi Negoro (Nihon Univ.) Mutsumi Sugizaki, Masaru Matsuoka.
1 Search for Dark Matter Galactic Satellites with Fermi-LAT Ping Wang KIPAC-SLAC, Stanford University Representing the Fermi LAT Collaboration.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
14 July 2009Keith Bechtol1 GeV Gamma-ray Observations of Galaxy Clusters with the Fermi LAT Keith Bechtol representing the Fermi LAT Collaboration July.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Sabrina Casanova Max Planck Institut fuer Kernphysik, Heidelberg TeV Diffuse Galactic Gamma-Ray Emission.
Multi-wavelength AGN spectra and modeling Paolo Giommi ASI.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
The VHE gamma-ray sky viewed with H.E.S.S. Werner Hofmann MPI für Kernphysik Heidelberg © Philippe Plailly HESS = High Energy Stereoscopic System.
Molecular clouds and gamma rays
1 Possible indirect evidence for axion-like particles from far away AGN? Alessandro De Angelis INFN, INAF and Udine University Photon propagation Observation.
Massimo Persic INAF+INFN Trieste Gamma Rays from Star Forming Galaxies and Dark Matter.
Incontri di Fisica delle Alte Energie IFAE 2006 Pavia Vincenzo Vitale Recent Results in Gamma Ray Astronomy with IACTs.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The TeV view of the Galactic Centre R. Terrier APC.
1 1 Alessandro De Angelis, INAF INFN/Univ. Udine & IST Milano 09 Dark matter Rapid variability Does c depend on the photon energy? Anomalies in the propagation.
Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration.
The γ-ray sky above 10 GeV seen by the Fermi satellite Grenoble, December 5, 2011 Jean Ballet (AIM, CEA Saclay, France)
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
CTA Cherenkov Telescope Array CTA Josep-M.Paredes & Massimo Persic for CTA Consortium Vulcano, May 30, 2009.
Observations of SNR RX J with CANGAROO-II telescope Kyoto, Dec., 16, 2003 H. Katagiri, R. Enomoto, M. Mori, L. Ksenofontov Institute for cosmic.
Fermi Symposium, Washington, DCVERITAS Observations of SNRs and PWNe B. Humensky, U. of Chicago Brian Humensky for the VERITAS Collaboration November 4,
Radio galaxy Elliptical Fanaroff-Riley type I “Misaligned” BL Lac (~ 60  ) Distance 3.5 Mpc Parameter Value  (J2000) 201   (J2000) -43 
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
MAGIC Recent AGN Observations. The MAGIC Telescopes Located at La Palma, altitude 2 200m First telescope in operation since 2004 Stereoscopic system in.
Multi-Zone Modeling of Spatially Non-uniform Cosmic Ray Sources Armen Atoyan Concordia University, Montreal FAA60 Barcelona, 7 November 2012.
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Observations of the Large Magellanic Cloud with Fermi Jürgen Knödlseder (Centre d’Etude Spatiale des Rayonnements) On behalf of the Fermi/LAT collaboration.
HESS J An exceptionally luminous TeV γ-ray SNR Stefan Ohm (DESY, Zeuthen) Peter Eger (MPIK, Heidelberg) On behalf of the H.E.S.S. collaboration.
MAGIC Results Alessandro De Angelis INFN, IST and University of Udine ECRS Lisboa, September 2006.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
Gamma-ray emission from molecular clouds: a probe of cosmic ray origin and propagation Sabrina Casanova Ruhr Universitaet Bochum & MPIK Heidelberg, Germany.
Liverpool: 08-10/04/2013 Extreme Galactic Particle Accelerators The case of HESS J Stefan Ohm ( Univ. of Leicester), Peter Eger, for the H.E.S.S.
High-Energy Astrophysics with AGILE Moriond 2009.
Pulsars: The radio/gamma-ray Connection Prospects for pulsar studies with AGILE and GLAST Synergy with radio telescopes –Timing and follow-up –Radio vs.
The science objectives for CALET Kenji Yoshida (Shibaura Institute of Technology) for the CALET Collaboration.
Associations of H.E.S.S. VHE  -ray sources with Pulsar Wind Nebulae Yves Gallant (LPTA, U. Montpellier II, France) for the H.E.S.S. Collaboration “The.
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
44 th Rencontres de Moriond - La Thuile, Valle d’Aosta, February 1-8, 2009 The MAGICextragalactic sky The MAGIC extragalactic sky Barbara De Lotto Università.
Diffuse Emission and Unidentified Sources
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Takayasu Anada ( anada at astro.isas.jaxa.jp), Ken Ebisawa, Tadayasu Dotani, Aya Bamba (ISAS/JAXA)anada at astro.isas.jaxa.jp Gerd Puhlhofer, Stefan.
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
Alexander Kappes Erlangen Centre for Astroparticle Physics XIV Lomonosov Conference Moscow, August 25, 2009 High-energy neutrinos from Galactic sources.
Recent Highlights from the Fermi-LAT
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
Tobias Jogler Max – Planck Institut für Physik The MAGIC view of our Galaxy Tobias Jogler for the MAGIC Collaboration.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Recent Observations of Supernova Remnants with VERITAS Amanda Weinstein (Iowa State University) For the VERITAS Collaboration.
Gamma Rays from the Radio Galaxy M87
Observation of Pulsars and Plerions with MAGIC
Cosmic rays, γ and ν in star-forming galaxies
Massive star clusters as Sources of Galactic Cosmic Rays (arXiv:1804
Presentation transcript:

Massimo Persic INAF/INFN-Trieste MAGIC Collaboration GeV-TeV prospects & results Issues :  Origin & diffusion properties of Galactic CRs: Main accelerators: SNRs? Diffusion: measure it?  Galaxies: massive SFR  AGNs: variability, SED, EBL  GRBs: SED, emission  pulsars: emission region  Clusters of galaxies: NT side of structure formation  Galaxy halos: DM Massimo Persic INAF-INFN Trieste MAGIC Collaboration

SNR shell  particle acceleration Resolved shell in VHE-  -rays  -rays from leptonic or hadronic channels? SNR RX J Aharonian Berezhko & Völk 2006 H.E.S.S. 3EG J B=100  G hadronic channel favored leptonic channel fav’d

Leptonic: E e ~ 20 (E  ) 1/2 TeV ~ 110 TeV … but KN sets on..  ~100 TeV Hadronic: E p ~ E  / 0.15 ~ 30 / 0.15 TeV ~ ~ 200 TeV... but: is SN statistics enough to fit CR energy density?

HESS J Hadronic: 2M  of target gas, exp-cutoff proton distrib:  =2.1, E c =100 TeV, n p =6cm -3, L(0.4  6 TeV)=2.5E+34erg/s Leptonic: B=10mG, exp-cutoff electron distrib:  =2.0, E c =20TeV D = 4 kpc ??? MAGIC AGILE Fermi LAT VHE  -rays: hadronic or leptonic ? Albert IACT GeV data  solve TeV spectral degeneracy  CRp normalization ABBA

 index  ~  (strong shock)  little variation across SNR Aharonian GeV+TeV  spatially resolved spectroscopy  young SNRs (t<t cool (p,e)): CRp spectrum  = 1+2  + b  measure  ( p ) as a function of p  = p b … b~0.6 ? from B/CNO ratio from VHE from radio

Galaxies Arp 220 Integrated view of VHE em. from massive SF: acceleration, diffusion, energy loss

F(>0.1 TeV) ~ ~ 2 x cm -2 s -1 F(>100 MeV) ~ ~ cm -2 s -1 MAGIC or VERITAS: hundreds of hours Fermi LAT: first-year scan M82: most promising candidate MP, Rephaeli & Arieli 2008 diffusion-loss eq. solved

Crab pulsar: detection First detection of pulsed emission at >25 GeV. Searches going on for ~35 years!! EGRET + MAGIC: pl * exp [–E/16.3 GeV)] pl * exp [–(E/20.7 GeV) 2 ]  at least for Crab pulsar, polar cap scenario challenged More psr obs’s: ms pulsars?

Active Galactic Nuclei IACT Fermi AGILE

Mrk 421

MAGIC 3C454.3 z=0.859 Jul/Aug & Nov/Dec 2007 AGILE trigger (S+E)SC model Ghisellini+ 2007

PG (?) AGILE MAGIC Fermi March/April 2008 First ever simultaneous HE+VHE  -ray obs of a blazar! p r e l i m i n a r y

Target-of-Opportunity (ToO) obs’s:  high states trigger in other  (  AGILE, Fermi; x: Swift, Suzaku; optical: KVA) simultaneous mwl observations: evolution of emitting particle population – emergy-dependent evolution in time Monitoring obs’s:  low states in several check quiet emission of blazar properties of steady-state particle spectrum –emergy-dependent evolution in time

 Limitless possibility for IACT follow-up?

Cross section ( differ.): Optical depth: TeV  : E soft  :  E ~ 1TeV    max for  ~0.5 eV (~2  m, K -band) Heitler 1960 Stecker+ 2006EBL IBL absorption Slkkkàkàk-lkn Stecker 1999 Hauser & Dwek 2001 x=1+cos 

Franceschini et al. 2008

Measuring EBL(z). Tools : sources with sound modeling & minimum number of parameters  BLLacs !? (l.o.s. orientation, jet-only emission, single-zone SSC). 1) Based on GeV data, set up a list of BLLacs whose predicted VHE flux is detectable with IACTs. Populate redshift space (out to z ~ 1) as closely as possible. 2) For each BLLac source, obtain simultaneous well-sampled mwl SEDs (at optical, X-ray, HE, and VHE frequencies) corresponding to different source states (low, high). This amounts to having several SEDs at each given z. Since in such SEDs the Compton peak typically occurs in the EBL-unaffected region 100 GeV) is known and can be assumed to represent the intrinsic VHE source spectrum. Contrasting it with data (measured between photon energies E 1 and E 2 ), we obtain n EBL (z) at redshift z and in the energy interval between, locally at redshift z, 0.5/[E 2 (1+ z )] eV and 0.5/[E 1 (1+ z )] eV. 3) Repeating procedure (2) with different SEDs (i.e.: different sources, or same source in different emission states) at the same z, in principle we should obtain consistent determinations of the EBL. In practice, we will reduce the statistic error affecting each determination of n EBL ( z ). 4) Selecting BLLac objects progressively farther away, we will measure EBL at different z. By repeating steps (2),(3) we will in principle obtain measures of n EBL (z) -- out to z ~1.

Gamma-Ray Bursts (GRBs)  Most energetic explosions since Big Bang (10 54 erg if isotropic)  Astrophysical setting unknown (hypernova?)  Emission mechanism unknown (hadronic vs leptonic, beaming, size of emitting region, role of environment, … … )  Cosmological distances (z >> 1) but... missed naked-eye GRB B (z=0.937 ) Gggg HE+VHE data crucial to constrain/unveil emission mechanism(s) HESS MAGIC ST

GRBs B  missed obs of “naked-eye” GRB Intrinsically: Nearby: z=0.937 Brightest ever observed in optical Exceedingly high isotropic- equivalent in soft  -rays Swift/BAT could have observed it out to z=4.9 1m-class telescope could observe out to z=17 Missed by both AGILE (Earth screening) and MAGIC (almost dawn) next BIG ONE awaited !!

Galaxy Clusters

Targets: Draco, Willman-I, Segue gals.

2. DRACO dSph Milky Way surrounded by small, faint companion galaxies - dSph’s  very DM-dominated objects. - Distances, M/L ratios 16<D/kpc<250 kpc, 30<M/L<300 DRACO dSph high M/L>200 d~80 kpc Northern source  MAGIC ok !!

Draco dSph: modeling cusped profile cored profile total DM annihil. rate N  :  -rays / annihil.  - ray flux  A v>, m  : WIMP annihil. cross section, mass d~80 kpc r s = 7 – 0.2 kpc  0 = 10 7 – 10 9 M  kpc -3  0 2 r s 3 = 0.03 – 6 M  2 kpc -3 Bergström & Hooper 2006 upper limit

MAGIC 40-h exp. Fermi 1-yr exp. IACT neutralino detection:  cm 3 s -1 Bergström & Hooper 2006 max. cusped min. cored +-+- W+W-W+W- ZZ bb t _ _ Stoehr unid’d GeV sky brightness fluct’s to be followed up a TeV energies

Draco dSph obs’d MAGIC arXiv: hr May 2007 m 0 > 2 TeV …   < (  DM  DM ) WMAP = m 0 > 2 TeV …   < (  DM  DM ) WMAP =  m 0  2 TeV …   < (  DM  DM ) WMAP =0.113 m 0  2 TeV …    (  DM  DM ) WMAP =

Probing Quantum Gravity

Mrk 501: Jul 9, 2005

GeV+TeV: wide spectral coverage to observe Galactic-environment phenomena useful to solve long-standing issues about CRs. SNRs, molecular clouds  HE+VHE emission mechanism, energy-dependent diffusion. GRBs, star-forming galaxies  SFR(z) Galaxy clusters  NT side of structure formation Pulsars  measure magnetosph. emission cutoff AGNs  solve (S+E)SC model of AGNs measure EBL(z) probe short-time variability as function of E simultaneous mwl monitoring of low-state ToO obs’s of high states DM halos  depending on m , decay channels, central density, distance Outlook

Thanks!