Normal Distribution بسم الله الرحمن الرحیم اردیبهشت 1390.

Slides:



Advertisements
Similar presentations
Normal Distribution This lecture will give an overview/review of normal distribution
Advertisements

Quantitative Analysis (Statistics Week 8)
Tutorial: Understanding the normal curve. Gauss Next mouse click.
سید احمد موسوی Line Maze Algorithm زمستان 90 بسمه تعالی.
Normal Distribution Sampling and Probability. Properties of a Normal Distribution Mean = median = mode There are the same number of scores below and.
Your next mouse click will display a new screen.
Definition. قانون بیز P(b|a) = P(a|b)P(b)/P(a) P(b|a) = P(a|b)P(b)/P(a) این قانون برای استنتاج آماری استفاده می شود. این قانون برای استنتاج آماری استفاده.
Decision Tree.
مثال های کاربردی (1) محاسبه سطوح دايره ای شکل –آبياری بارانی –سم پاشها تعريف مسئله: تهيه برنامه ای که بر اساس يک شعاع مفروض ورودی سطح دايره متناظر را محاسبه.
LINEAR CONTROL SYSTEMS Ali Karimpour Assistant Professor Ferdowsi University of Mashhad.
نسبتهای آماری مهم Cp, Cpk, Pp, Ppk
فایل پردازی در C File based Programming in C. انواع فایل متنی –سرعت بالا –حجم کمتر –امکان دسترسی تصادفی –حفظ امنیت داده ها دودویی (باینری) –امکان باز.
Normal Distributions.
Normal Distribution. Objectives The student will be able to:  identify properties of normal distribution  apply mean, standard deviation, and z -scores.
Common Statistical Tests Descriptive statistics (common in all types of studies – first step in reporting findings) Continuous variables: T-test, ANOVA,
Problem: Assume that among diabetics the fasting blood level of glucose is approximately normally distributed with a mean of 105mg per 100ml and an SD.
NOTES The Normal Distribution. In earlier courses, you have explored data in the following ways: By plotting data (histogram, stemplot, bar graph, etc.)
Math II UNIT QUESTION: Can real world data be modeled by algebraic functions? Standard: MM2D1, D2 Today’s Question: How is a normal distribution used to.
An Introduction to Statistics. Two Branches of Statistical Methods Descriptive statistics Techniques for describing data in abbreviated, symbolic fashion.
Database Laboratory: Session #4 Akram Shokri. DB-Lab 2 Lab Activity You must already created all tables You have to have inserted proper data in tables.
C Del Siegle This tutorial is intended to assist students in understanding the normal curve. Adapted from work created by Del Siegle University of.
1 Probability Distributions پارامترهای ارزیابی قابلیت اطمینان توسط تابع توزیع احتمال توصیف می شوند زمان از کار افتادن یک قطعه از سیستم از تابع توزیع احتمال.
 Two basic types Descriptive  Describes the nature and properties of the data  Helps to organize and summarize information Inferential  Used in testing.
موضوع: دبير مربوطه: آموزشگاه : اجرا : عبارتهای جبری خانم مقصودی
Problem: Assume that among diabetics the fasting blood level of glucose is approximately normally distributed with a mean of 105mg per 100ml and an SD.
2005 Updated 10/19/09 Normal Distribution Tripthi M. Mathew, MD, MPH, MBA.
Outline of Today’s Discussion 1.Displaying the Order in a Group of Numbers: 2.The Mean, Variance, Standard Deviation, & Z-Scores 3.SPSS: Data Entry, Definition,
LINEAR CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad.
Arrangements of Lines C omputational Geometry By Samaneh shafi naderi
Normal Distribution S-ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages.
CHAPTER 11 Mean and Standard Deviation. BOX AND WHISKER PLOTS  Worksheet on Interpreting and making a box and whisker plot in the calculator.
1.Assemble the following tools: Graphing calculator z-tables (modules 4 - 5)z-tables Paper and pencil Reference for calculator keystrokes 2.Complete the.
Normal Distribution 1. Objectives  Learning Objective - To understand the topic on Normal Distribution and its importance in different disciplines. 
آشنايي با سيستم اعداد.
IN THE NAME OF GOD.
Problem: Assume that among diabetics the fasting blood level of glucose is approximately normally distributed with a mean of 105mg per 100ml and an SD.
[c.
Statistics is the science of conducting studies to collect, organize, summarize, analyze, present, interpret and draw conclusions from data. Table.
تمرین هفتم بسم الله الرحمن الرحیم درس یادگیری ماشین محمدعلی کیوان راد
هیدروگراف(Hydrograph) تهیه : دکتر محمد مهدی احمدی
بنام خدا زبان برنامه نویسی C (21814( Lecture 12 Selected Topics
توزیع نرمال میانگین فشار خون جامعه
بسم الله الرحمن الرحیم.
Odd-even merge sort مرتب سازی.
چگونه بفهمیم آیا ژورنالی ISI است؟ ایمپکت فاکتور دارد یا خیر؟
مدیریت مالی و اقتصاد مدیریت موضوع : نقطه سر به سر زمستان 93
نمايش اعداد در کامپيوتر چهار عمل اصلي
1.
The normal distribution
The Normal Distribution
داده ها -پیوسته Continuous
شرایط مرزی (Boundary Conditions) در مدل سازی آب زیرزمینی
دینامیک سیستمهای قدرت مدرس: دکتر مهدی بانژاد
تهیه و تنظیم: فاطمه قاسمی دانشگاه صنعتی شریف – پاییز 86
فضای نمونه: مجموعه همه برآمدهای ممکن یک آزمایش را فضای نمونه گویند . واقعه (پیشامد) : هر زیر مجموعه از فضای نمونه را پیشامد گویند . پیشامدها با حروف بزرگ.
بسم الله الرحمن الرحیم هرس درخت تصمیم Dr.vahidipour Zahra bayat
با تشکر از جناب آقای مهندس بگ محمدی
IN THE NAME OF GOD MATH SABA KARBALAEI
فصل ششم مدارهای ترتیبی.
ساختمان داده‌ها درختان و درختان دودویی
مدار منطقي مظفر بگ محمدي
مدار منطقي مظفر بگ محمدي
توزیع میانگین نمونه سعید موسوی.
2.1 Density Curves and the Normal Distributions
نسبت جرم فرمولی ”جرم اتمی و فرمول تجربی
kbkjlj/m/lkiubljj'pl;
مباني كامپيوتر و برنامه سازي Basics of Computer and Programming
مباني كامپيوتر و برنامه سازي Basics of Computer and Programming
بسم الله الرحمن الرحیم روشنایی محیط کار
Section 13.6 The Normal Curve
Presentation transcript:

Normal Distribution بسم الله الرحمن الرحیم اردیبهشت 1390

Length of Right Foot Number of People with that Shoe Size Suppose we measured the right foot length of 30 persons and graphed the results. Assume the first person had a 10 inch foot. We could create a bar graph and plot that person on the graph. If our second subject had a 9 inch foot, we would add her to the graph. As we continued to plot foot lengths, a pattern would begin to emerge. Slide from Del Siegle

Length of Right Foot If we were to connect the top of each bar, we would create a frequency polygon. Notice how there are more people (n=6) with a 10 inch right foot than any other length. Notice also how as the length becomes larger or smaller, there are fewer and fewer people with that measurement. This is a characteristics of many variables that we measure. There is a tendency to have most measurements in the middle, and fewer as we approach the high and low extremes. Number of People with that Shoe Size Slide from Del Siegle

Length of Right Foot Number of People with that Shoe Size You will notice that if we smooth the lines, our data almost creates a bell shaped curve. Slide from Del Siegle

Length of Right Foot Number of People with that Shoe Size You will notice that if we smooth the lines, our data almost creates a bell shaped curve. This bell shaped curve is known as the “Bell Curve” or the “Normal Curve.” Slide from Del Siegle

n=512n=256 n=128 n=64 n=32n=16 n=8n=4

Whenever you see a normal curve, you should imagine the bar graph within it Points on a Quiz Number of Students Slide from Del Siegle

توزیع نرمال این توزیع از نوع پیوسته است. منحنی آن به شکل زنگوله ای و قرینه می باشد. میانگین در آن با علامت μ نشان داده می شود. انحراف معیار با حرف б نشان داده می شود. میانگین و انحراف معیار دو پارامتر توزیع می باشند.

توزیع نرمال مقدار μ ، محل دقیق میانگین را روی خط افقی مشخص می کند. انحراف معیار ، б ، شکل توزیع را تعیین می کند.  تعداد منحنی های نرمال بسیارند و هریک دارای یک مقدارμ وб می باشند.

68.2% توزیع نرمال

68.2% توزیع نرمال

The mean, Points on a Quiz Number of Students = / 51 = 17 Now lets look at quiz scores for 51 students. Slide from Del Siegle

The mean,mode, Points on a Quiz Number of Students Slide from Del Siegle

The mean,mode,and median Points on a Quiz Number of Students , 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 22 will all fall on the same value in a normal distribution. Slide from Del Siegle

خصوصیات توزیع نرمال توزیع نرمال یک توزیع احتمالات است. – سطح زیر منحنی برابر با یک ( یا 100 %) می باشد. توزیع نرمال ، توزیع قرینه است. – نصف سطح زیر منحنی در طرف چپ خط قائمی که از میانگین می گذرد قرار دارد و نصف دیگر در طرف راست آن.

If your data fits a normal distribution, approximately 68% of your subjects will fall within one standard deviation of the mean. Slide from Del Siegle

If your data fits a normal distribution, approximately 68% of your subjects will fall within one standard deviation of the mean. Approximately 95% of your subjects will fall within two standard deviations of the mean. Slide from Del Siegle

If your data fits a normal distribution, approximately 68% of your subjects will fall within one standard deviation of the mean. Approximately 95% of your subjects will fall within two standard deviations of the mean. Over 99% of your subjects will fall within three standard deviations of the mean. Slide from Del Siegle

If your data fits a normal distribution, approximately 68% of your subjects will fall within one standard deviation of the mean. Approximately 95% of your subjects will fall within two standard deviations of the mean. Over 99% of your subjects will fall within three standard deviations of the mean.

The number of points that one standard deviations equals varies from distribution to distribution. On one math test, a standard deviation may be 7 points. If the mean were 45, then we would know that 68% of the students scored from 38 to Points on Math Test Points on a Different Test On another test, a standard deviation may equal 5 points. If the mean were 45, then 68% of the students would score from 40 to 50 points. Slide from Del Siegle

Length of Right Foot Data do not always form a normal distribution. When most of the scores are high, the distributions is not normal, but negatively (left) skewed. Number of People with that Shoe Size Skew refers to the tail of the distribution. Because the tail is on the negative (left) side of the graph, the distribution has a negative (left) skew. Slide from Del Siegle

Length of Right Foot Number of People with that Shoe Size When most of the scores are low, the distributions is not normal, but positively (right) skewed. Because the tail is on the positive (right) side of the graph, the distribution has a positive (right) skew. Slide from Del Siegle

 When data are skewed, they do not possess the characteristics of the normal curve (distribution).  For example, 68% of the subjects do not fall within one standard deviation above or below the mean.  The mean, mode, and median do not fall on the same score.  The mode will still be represented by the highest point of the distribution, but the mean will be toward the side with the tail and the median will fall between the mode and mean. Slide from Del Siegle

When data are skewed, they do not possess the characteristics of the normal curve (distribution). For example, 68% of the subjects do not fall within one standard deviation above or below the mean. The mean, mode, and median do not fall on the same score. The mode will still be represented by the highest point of the distribution, but the mean will be toward the side with the tail and the median will fall between the mode and mean. meanmedianmode Negative or Left Skew Distribution meanmedianmode Positive or Right Skew Distribution Slide from Del Siegle

توزیع نرمال استاندارد توزیع نرمال که : – میانگین ، μ ، برابر با صفر باشد – انحراف معیار، б ، برابر با یک باشد  در مواقعی که میانگین یک توزیع نرمال برابر با صفر و انحراف معیار برابر با یک نمی باشد ؛ با تبدیل Z می توان براحتی از جدول نرمال استاندارد استفاده نمود.

Z Score (Standard Score) Z = X - μ مقدار نمره Z ، تفاوت از میانگین در واحد انحراف معیار را بیان می نماید. مقدار نمره Z ، تا دو عدد اعشار محاسبه می گردد. σ

Tables Areas under the standard normal curve (Appendices of the textbook)

تمرین در نظر بگیرید ضربان قلب طبیعی در افراد سالم دارای توزیع نرمال بوده با میانگین 70 و انحراف معیار 10 ضربه در دقیقه (Mean = 70 and Standard Deviation =10 beats/min ) The exercises are modified from examples in Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, 1994.

1 # تمرین بر این اساس : 1 ) چه بخشی از منحنی بالای 80 ضربه در دقیقه قرار می گیرد؟ Modified from Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, 1994.

منحنی تمرین # % 13.6% The exercises are modified from examples in Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, % 0.13%

2 # تمرین 2 ) چه بخشی از منحنی بالای 90 ضربه در دقیقه قرار می گیرد؟ Modified from Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, 1994.

2.3 % 2.14% The exercises are modified from examples in Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, منحنی تمرین # %

3 # تمرین 3 ) چه بخشی از منحنی بین ضربه در دقیقه قرار می گیرد؟ Modified from Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, 1994.

95.4 % 47.7% The exercises are modified from examples in Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, منحنی تمرین # %

4 # تمرین 4 ) چه بخشی از منحنی بالای 100 ضربه در دقیقه قرار می گیرد؟ Modified from Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, 1994.

0.15 % The exercises are modified from examples in Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, منحنی تمرین # %

5 # تمرین 5 ) چه بخشی از منحنی کمتر از 40 ضربه در دقیقه یا بالای 100 ضربه در دقیقه قرار می گیرد؟ Modified from Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, 1994.

0.3 % The exercises are modified from examples in Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, منحنی تمرین # %

Solution/Answers 1) 15.9% or ) 2.3% or ) 95.4% or ) 0.15 % or ) % or (for each tail) The exercises are modified from examples in Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, 1994.

Application/Uses of Normal Distribution It’s application goes beyond describing distributions It is used by researchers and modelers. The major use of normal distribution is the role it plays in statistical inference. The z score along with the t –score, chi-square and F-statistics is important in hypothesis testing. It helps managers/management make decisions.

6 # تمرین 6) اگر فشارخون سیستولیک در افراد سالم نرمال بطور طبیعی با میانگین 120 و انحراف معیار 10 میلی متر جیوه توزیع شده باشد : چه مقداری از فشار خون سیستولیک سطح زیر منحنی نرمال را به دو قسمت پایین 95 % و بالای 5 % تقسیم می کند؟

The exercises are modified from examples in Dawson-Saunders, B & Trapp, RG. Basic and Clinical Biostatistics, 2nd edition, منحنی تمرین # 6 5% 95%

Z = X - μ σ پاسخ تمرین # 6  با استفاده از جدول مقدار Z که مقادیر کمتر از 95% سطح زیر منحنی را از 5% بالایی سطح زیر منحنی جدا می کند، بدست می آوریم =Z  = X  10))(1.645 ) = X  X =

خسته نباشید.