Conceptual Model of Selenium Release from Shale Units Within the Meade Peak Member of the Phosphoria Formation Kathryn Johnson, Ph.D. Understanding release mechanisms is necessary – to design and interpret leaching experiments – Develop source terms for predictive groundwater transport models – Evaluate waste management alternatives Conceptual model developed from reviews of general studies and site specific data
Column Leaching of CWS from Smoky Canyon Panels F&G, Environmental Geochemistry Report, Maxim 2005
Column Leaching from Blackfoot Bridge SPBF, Geochemical Characterization Study, Whetstone Associates, Inc., 2008
Phosphoria Formation Geological Historical of Marine Shale Apatite (phosphate) depositional detritus Diagenesis – mineral alteration Oil generation created pore space Thrusting and faulting created fracture zones Volcanism produced warm fluids carrying selenium Alteration by oxidizing fluids following fracture zones
Mineralogical Analysis Data from USGS study, Hein 2004 Organic carbon, calcite, dolomite, and carbonate fluorapatite appear to have formed primarily through diagenesis Pyrite associated with apatite pelloids formed through diagenesis Epigenetic pyrite along fractures, veins and bedding planes
Mineralogical Analysis of Selenium Electron Microscopy and Microprobe Data from USGS study, Hein 2004 Present mostly as elemental Se Often associated with organic carbon Se adsorbed on fracture surfaces, pyrite, iron oxide, kaolinite, iron-rich phosphate minerals Selenite adsorbed on oxide surfaces Little enrichment of Se in apatite pellets 10- to 100-fold enrichment of Se in pyrite
Leachable Se as Percentage of Total Se Column Leachates - < 2% SPLP – 0.1 % - 5.4% [Tetra Tech, 2008] Sequential Extraction [Hein, 2004] Water soluble 0.2 – 2% Elemental 0 – 8% Organic 0.4 – 14% Oxide/Carbonate 9 – 49% Sulfide 37 – 88%
Column Leachates pe/pH diagram from Masscheleyn & Patrick, 1993
Column Leaching from Blackfoot Bridge SPBF, Geochemical Characterization Study, Whetstone Associates, Inc., 2008
Column Leaching of CWS from Smoky Canyon Panels F&G, Environmental Geochemistry Report, Maxim 2005
Column Leaching from Blackfoot Bridge SPBF, Geochemical Characterization Study, Whetstone Associates, Inc., 2008
Observations from Column Leachates pe/pH predict predominance of selenite/selenate Dissolved oxygen present in all columns Oxygen consumption during first PV (all columns) Increased dissolved Mn in saturated v unsaturated columns suggesting slightly lower redox potentials Slightly depressed pH in PV1 in unaltered v altered Greater Se and SO4 in unaltered v altered Greater Se and SO4 unsaturated v saturated
Increased Se from Unsaturated v Saturated Hypothesis One – Se from unsaturated column represents desorption – Lower Se from saturated column due to reduction of Se to Se(0) or Se(-2) – Inconsistent with pe/pH conditions and SO4 Hypothesis Two – Increased desorption of Se from unsaturated column by oxidation from selenite to selenate – Se from unsaturated column includes oxidation of Se(0) or Se(-2) associated with pyrite – Accounts for increased SO4, depressed pH in early PV from unsaturated columns and is consistent with redox conditions
Increased Se and SO4 from Unaltered v Altered Geologic alteration of shale – oxidation of sulfides, dissolution of carbonates, precipitation of oxides Unaltered v Altered Shale – Less geologic oxidation and leaching – More adsorbed Se available for desorption – Se and sulfur available for oxidation – Sulfide oxidation limited by armoring from oxyhydroxides, carbonates and phosphates – Slow oxidation rates at circum-neutral pH