Matrices and Systems of Equations

Slides:



Advertisements
Similar presentations
Copyright © Cengage Learning. All rights reserved.
Advertisements

4.3 Matrix Approach to Solving Linear Systems 1 Linear systems were solved using substitution and elimination in the two previous section. This section.
Gauss Elimination.
Chapter 2 Simultaneous Linear Equations
Chapter 4 Systems of Linear Equations; Matrices Section 2 Systems of Linear Equations and Augmented Matrics.
1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 4-1 Systems of Equations and Inequalities Chapter 4.
Lesson 8 Gauss Jordan Elimination
Solving Systems of Linear Equations Part Pivot a Matrix 2. Gaussian Elimination Method 3. Infinitely Many Solutions 4. Inconsistent System 5. Geometric.
Matrices. Special Matrices Matrix Addition and Subtraction Example.
Linear Systems and Matrices
Lesson 8.1, page 782 Matrix Solutions to Linear Systems
Chapter 1 Section 1.2 Echelon Form and Gauss-Jordan Elimination.
Section 8.1 – Systems of Linear Equations
Table of Contents Solving Systems of Linear Equations - Gaussian Elimination The method of solving a linear system of equations by Gaussian Elimination.
Matrices Write and Augmented Matrix of a system of Linear Equations Write the system from the augmented matrix Solve Systems of Linear Equations using.
Introduction Information in science, business, and mathematics is often organized into rows and columns to form rectangular arrays called “matrices” (plural.
Systems of linear equations. Simple system Solution.
1.2 Gaussian Elimination.
SYSTEMS OF LINEAR EQUATIONS
Chap. 1 Systems of Linear Equations
Multivariable Linear Systems
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Chapter 1 Systems of Linear Equations and Matrices
Copyright © Cengage Learning. All rights reserved.
Matrices King Saud University. If m and n are positive integers, then an m  n matrix is a rectangular array in which each entry a ij of the matrix is.
Copyright © Cengage Learning. All rights reserved. 7.4 Matrices and Systems of Equations.
AN INTRODUCTION TO ELEMENTARY ROW OPERATIONS Tools to Solve Matrices.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Section 1.1 Introduction to Systems of Linear Equations.
Warm-Up Write each system as a matrix equation. Then solve the system, if possible, by using the matrix equation. 6 minutes.
Sec 3.1 Introduction to Linear System Sec 3.2 Matrices and Gaussian Elemination The graph is a line in xy-plane The graph is a line in xyz-plane.
Three variables Systems of Equations and Inequalities.
How To Find The Reduced Row Echelon Form. Reduced Row Echelon Form A matrix is said to be in reduced row echelon form provided it satisfies the following.
Row rows A matrix is a rectangular array of numbers. We subscript entries to tell their location in the array Matrices are identified by their size.
8.1 Matrices and Systems of Equations. Let’s do another one: we’ll keep this one Now we’ll use the 2 equations we have with y and z to eliminate the y’s.
Chapter 6 Matrices and Determinants Copyright © 2014, 2010, 2007 Pearson Education, Inc Matrix Solutions to Linear Systems.
Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix.
Using Matrices A matrix is a rectangular array that can help us to streamline the solving of a system of equations The order of this matrix is 2 × 3 If.
MCV4U1 Matrices and Gaussian Elimination Matrix: A rectangular array (Rows x Columns) of real numbers. Examples: (3 x 3 Matrix) (3 x 2 Matrix) (2 x 2 Matrix)
Copyright © 2011 Pearson Education, Inc. Solving Linear Systems Using Matrices Section 6.1 Matrices and Determinants.
Matrices and Systems of Linear Equations
Section 1.2 Gaussian Elimination. REDUCED ROW-ECHELON FORM 1.If a row does not consist of all zeros, the first nonzero number must be a 1 (called a leading.
Copyright © 2009 Pearson Education, Inc. CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations.
Section 7-3 Solving 3 x 3 systems of equations. Solving 3 x 3 Systems  substitution (triangular form)  Gaussian elimination  using an augmented matrix.
Linear Equation System Pertemuan 4 Matakuliah: S0262-Analisis Numerik Tahun: 2010.
 SOLVE SYSTEMS OF EQUATIONS USING MATRICES. Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley 9.3 Matrices and Systems of Equations.
10.3 Systems of Linear Equations: Matrices. A matrix is defined as a rectangular array of numbers, Column 1Column 2 Column jColumn n Row 1 Row 2 Row 3.
Matrices and Systems of Equations
Meeting 19 System of Linear Equations. Linear Equations A solution of a linear equation in n variables is a sequence of n real numbers s 1, s 2,..., s.
7.3 & 7.4 – MATRICES AND SYSTEMS OF EQUATIONS. I N THIS SECTION, YOU WILL LEARN TO  Write a matrix and identify its order  Perform elementary row operations.
Section 5.3 MatricesAnd Systems of Equations. Systems of Equations in Two Variables.
Slide Copyright © 2009 Pearson Education, Inc. 7.4 Solving Systems of Equations by Using Matrices.
Multivariable linear systems.  The following system is said to be in row-echelon form, which means that it has a “stair-step” pattern with leading coefficients.
Gaussian Elimination Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Gaussian elimination with back-substitution.
College Algebra Chapter 6 Matrices and Determinants and Applications
Section 6.1 Systems of Linear Equations
Systems of linear equations
Gaussian Elimination and Gauss-Jordan Elimination
Gaussian Elimination and Gauss-Jordan Elimination
Solving Systems of Equations Using Matrices
Chapter 8: Lesson 8.1 Matrices & Systems of Equations
Matrices and Systems of Equations 8.1
Chapter 1 Systems of Linear Equations and Matrices
Matrices and Systems of Equations
Gaussian Elimination and Gauss-Jordan Elimination
Elementary Row Operations Gaussian Elimination Method
College Algebra Chapter 6 Matrices and Determinants and Applications
Section 8.1 – Systems of Linear Equations
Matrices are identified by their size.
Presentation transcript:

Matrices and Systems of Equations CHAPTER 8.1 Matrices and Systems of Equations

Matrix- a streamlined technique for solving systems of linear equations that involves the use of a rectangular array of numbers M rows N columns M x N

Order of Matrices

system augmented matrix coefficient matrix

Writing an Augmented Matrix 1. Begin by writing the linear system and aligning the variables. 2. Next, use the coefficients and constant terms as the matrix entries. Include zeroes for each missing coefficients.

Elementary Row Operations 1. Interchange two rows. 2. Multiply a row by a nonzero constant. 3. Add a multiple of a row to another row.

Use back-substitution to find the solution Associated Augmented Matrix Use back-substitution to find the solution

Row-Echelon Form and Reduced Row-Echelon Form 1. All rows consisting of zeroes occur at the bottom of the matrix. 2. For each row that does not consist of zeroes, the first nonzero entry is 1(called a leading 1). 3. For two successive (nonzero) rows, the leading 1 in the higher row is farther to the left than the leading 1 in the lower row. Reduced row-echelon form- if every column that has a leading 1 has zeroes in every position above and below its leading 1.

For example: Row-Echelon Form Reduced row-echelon form

Solve the system Switch row 1 with row 2

Use back-substitution

Gaussian Elimination with Back-Substitution 1. Write the augmented matrix of the system of linear equations. 2. Use elementary row operations to rewrite the augmented matrix in row-echelon form. 3. Write the system of linear equations corresponding to the matrix in row-echelon form and use back-substitution to find the solution.

inconsistent, no solution Solve the system In row 3, inconsistent, no solution

Apply additional elementary row operations until you obtain a matrix in reduced row-echelon form.

=infinite number of solutions Solve the system Let where a is A real number, then the solution set has the form =infinite number of solutions