INAF-Osservatorio Astrofisico di Arcetri

Slides:



Advertisements
Similar presentations
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Advertisements

From protostellar cores to disk galaxies - Zurich - 09/2007 S.Walch, A.Burkert, T.Naab Munich University Observatory S.Walch, A.Burkert, T.Naab Munich.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
References [1] Liseau R., Lorenzetti D., Nisini B. et al A&A 265, 577 [2] Massi F., De Luca M., Elia D. et al A&A, submitted 399,14 [3] C.A.
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
How do stars get their masses? and A short look ahead Phil Myers CfA Dense Core LXV Newport, RI October 23, 2009.
Theories of Massive Star Formation Ian A. Bonnell University of St Andrews.
From Pre-stellar Cores to Proto-stars: The Initial Conditions of Star Formation PHILIPPE ANDRE DEREK WARD-THOMPSON MARY BARSONY Reported by Fang Xiong,
A Search For Fragmentation in Starless Cores with ALMA Scott Schnee (NRAO) Hector Arce, Tyler Bourke, Xuepeng Chen, James Di Francesco, Michael Dunham,
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
DUSTY04 – Paris ALMA and ISM / Star Formation Stéphane GUILLOTEAU Observatoire de Bordeaux.
Constraining the Physics of Star Formation in Galaxies Using the JVLA and GBT Amanda Kepley NRAO - GB.
From Massive Cores to Massive Stars Mark Krumholz Princeton University Collaborators: Richard Klein, Christopher McKee (UC Berkeley) Kaitlin Kratter, Christopher.
Outflow, infall, and rotation in high-mass star forming regions
Mini Workshop on Star Formation and Astrochemistry. Barcelona, 2006 November 23 1 Robert Estalella, Aina Palau, Maite Beltrán (UB) Paul T. P. Ho (CfA),
Cambridge, June 13-16, 2005 A Study of Massive Proto- and Pre-stellar Candidates with the SEST Antenna Maite Beltrán Universitat de Barcelona J. Brand.
e-MERLIN Key Project on Massive Star Formation
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Leonardo Testi: (Sub)Millimeter Observations of Disks Around High-Mass Proto-Stars, SMA, Cambridge 14 Jun 2005 Disks around High-Mass (Proto-)Stars  From.
Magnetic Fields: Recent Past and Present Shantanu Basu The University of Western Ontario London, Ontario, Canada DCDLXV, Phil Myers Symposium Thursday,
Definitive Science with Band 3 adapted from the ALMA Design Reference Science Plan (
Á L V A R O S Á N C H E Z M O N G E B A R C E L O N A - N O V E M B E R 23, 2006 Centimeter and Millimeter Emission from Selected High-Mass Star-Forming.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
Masers observations of Magnetic fields during Massive Star Formation Wouter Vlemmings (Argelander-Institut für Astronomie, Bonn) with Gabriele Surcis,
How Massive are the First Stars? Statistical Study of the primordial star formation  M popIII ALMA 北海道大学 / Jan , 2013 ○ Shingo Hirano.
ATLASGAL ATLASGAL APEX Telescope Large Area Survey of the Galaxy F. Schuller, K. Menten, P. Schilke, et al. Max Planck Institut für Radioastronomie.
A MINIMUM COLUMN DENSITY FOR O-B STAR FORMATION: AN OBSERVATIONAL TEST Ana López Sepulcre INAF - Osservatorio Astrofisico di Arcetri (Firenze, ITALY) Co-authors:
High-mass star forming regions: An ALMA view Riccardo Cesaroni INAF - Osservatorio Astrofisico di Arcetri.
Deciphering Ancient Terrsa 20 Apr 2010 Low-metallicity star formation and Pop III-II transition Kazu Omukai (Kyoto U.) Collaborators: Naoki.
Direct Physical Diagnostics of Triggered Star Formation Rachel Friesen NRAO Postdoctoral Fellow North American ALMA Science Center C. Brogan, R. Indebetouw,
Great Barriers in High Mass Star Formation, Townsville, Australia, Sept 16, 2010 Patrick Koch Academia Sinica, Institute of Astronomy and Astrophysics.
Origin of solar systems 30 June - 2 July 2009 by Klaus Jockers Max-Planck-Institut of Solar System Science Katlenburg-Lindau.
Theories of Massive Star Formation Ian A. Bonnell University of St Andrews.
Does feedback from low mass stars affect fragmentation in massive protoclusters? Steve Longmore Harvard-Smithsonian Center for Astrophysics Thushara Pillai.
The properties of starless cores in intermediate-/high-mass protoclusters Francesco Fontani European Southern Observatory (ESO) Institut de RadioAstronomie.
 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.
Maite Beltrán Osservatorio Astrofisico di Arcetri The intringuing hot molecular core G
1)Observations: where do (massive) stars form? 2)Theory: how do (massive) stars form? 3)Search for disks in high-mass (proto)stars 4)Results: disks in.
High-mass star formation Paola Caselli (Leeds), Francesco Fontani (IRAM), Izaskun Jimenez-Serra (CfA), Mark Krumholz (UCSC), Christopher McKee (UCB), Francesco.
Nichol Cunningham. Why? Massive stars are the building blocks of the universe. Continuously chemically enrich our galaxy. Release massive amounts of energy.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Searching for massive pre-stellar cores through observations of N 2 H + and N 2 D + (F. Fontani 1, P. Caselli 2, A. Crapsi 3, R. Cesaroni 4, J. Brand 1.
Rotation Among High Mass Stars: A Link to the Star Formation Process? S. Wolff and S. Strom National Optical Astronomy Observatory.
Probing the First Star Formation by 21cm line Kazuyuki Omukai (Kyoto U.)
From Planetesimals to Planets Pre-Galactic Black Holes and ALMA.
1)The environment of star formation 2)Theory: low-mass versus high-mass stars 3)The birthplaces of high-mass stars 4)Evolutionary scheme for high-mass.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
1)Are disks predicted?  Theories of HM SF 2)Are disks observed?  Search methods 3)Observational evidence  disks VS toroids 4)Open questions and the.
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
1)The importance of disks in massive (proto)stars 2)The search for disks: methods and tracers 3)The result: “real” disks found in B (proto)stars 4)The.
Outflows and Jets: Theory and Observations Winter term 2006/2007 Henrik Beuther & Christian Fendt Introduction & Overview (H.B. & C.F.) Definitions,
LDN 723: Can molecular emission be used as clock calibrators? Josep Miquel Girart Collaborators: J.M.Masqué,R.Estalella (UB) R.Rao (SMA)
The Structures on Sub-Jeans Scales, Fragmentation, and the Chemical Properties in Two Extremely Dense Orion Cores Zhiyuan Ren, Di Li (NAOC) and Nicolas.
1 SIMBA survey of southern high-mass star forming regions Santiago Faúndez (U. de Chile) Leonardo Bronfman(U. de Chile) Guido Garay (U. de Chile) Rolf.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
21 November 2002Millimetre Workshop 2002, ATNF High mass star formation in the Southern hemisphere sky Vincent Minier (Service d’Astrophysique, CEA Saclay),
High-mass star formation
Fumitaka Nakamura (National Astronomical Observatory of Japan)
Possible evolutionary sequence for high-mass star formation
Portrait of a Forming Massive Protocluster: NGC6334 I(N)
Deuterium-Bearing Molecules in Dense Cores
The MALT90 survey of massive star forming regions
Osservatorio Astrofisico di Arcetri
OBSERVATIONS OF BINARY PROTOSTARS
Using ALMA to disentangle the Physics of Star Formation in our Galaxy
Chasing disks around massive stars with Malcolm
Astrochemical modeling of Planck cold clump G
Presentation transcript:

INAF-Osservatorio Astrofisico di Arcetri Fragmentation of massive dense clumps: unveiling the initial conditions of massive star formation (ALMA cycle-1 accepted project) FRANCESCO FONTANI INAF-Osservatorio Astrofisico di Arcetri Maite Beltràn INAF-OAA Riccardo Cesaroni INAF-OAA Alvaro Sanchez-Monge INAF-OAA Leonardo Testi ESO & INAF-OAA Malcolm Walmsley INAF-OAA Jan Brand INAF-IRA Andrea Giannetti INAF-IRA / MPIfR (D) Benoit Commerçon ENS Lyon (F) Patrick Hennebelle ENS Paris (F) Paola Caselli MPE (D) Steven Longmore U Liverpool (UK) Jonathan Tan U Florida (US) Richard Dodson ICRAR (AUS) Maria Rioja ICRAR (AUS)

Astrophysical context and motivation Star formation: standard theory Shu, Adams & Lizano 1987 1 pc PRE-STELLAR PHASE: PROTO-STELLAR PHASE 3. PRE-MAIN SEQUENCE PHASE

M*>8Mʘ: tacc> tK-H Astrophysical context and motivation Two relevant timescales in the standard theory: tacc=M*/(dM/dt) tK-H =GM*2/R*L* M*<8Mʘ: tacc< tK-H pre-main sequence: YES M*>8Mʘ: tacc> tK-H pre-main sequence: NO accretion on MS !

Astrophysical context and motivation BASIC PROBLEM of the STANDARD MODEL: The radiation pressure of the “embryo” star STOPS accretion 1. M*>8Msun CANNOT FORM 2. SOLUTIONS: Courtesy of L. Carbonaro COMPETITIVE-ACCRETION: Fragmentation of a massive clump into many low-mass seeds which keep accreting from unbound gas, and/or merge through collisions (e.g. Bonnell et al. 1998, 2001, Bonnell & Bate 2005, Wang et al. 2010) CORE-ACCRETION: Fragmentation of a massive clump inhibited, and non-spherical collapse into a single high-mass star or close binary system (e.g. Wolfire & Cassinelli 1978, McLaughlin & Pudritz 1996, Yorke & Sonnhalter 2002, Tan & McKee 2003) Fragmentation of the parent clump crucial

Astrophysical context and motivation Fragmentation influenced by: (e.g. Krumholz 2006; Hennebelle et al. 2011) Intrinsic turbulence Magnetic support Protostellar feedback gravity vs

Astrophysical context and motivation Predictions of theoretical models: (Hennebelle et al. 2011; Commerçon et al. 2012) μ = 2 , dominant magnetic support μ = 130, faint magnetic support μ = (M/Φ)/(M/Φ)crit 280 GHz cont. N2H+ (3-2) Core separation ~ 1000 A.U. Masses: from 0.2 to 10 M  The role of magnetic field can be tested deriving the population of fragments (or cores) in pristine massive clumps

Astrophysical context and motivation Predictions of theoretical models: magnetic vectors (Hennebelle et al. 2011; Commerçon et al. 2012) μ = 2 , dominant magnetic support μ = 130, faint magnetic support  The role of magnetic field can be tested deriving the population of fragments (or cores) in pristine massive clumps

Testing theories with observations Problems:  Massive starless clumps are RARE Typical distances greater than 1 kpc: SMALL ANGULAR SIZE Surrounded by large amount of other gas: CONFUSION FREEZE-OUT of species commonly used to derive physics and kinematics T < 20 K n(H2) > 105 cm-3 High CO (and CS) DEPLETION FACTOR fD = X(CO)T/X(CO)O > 1 (e.g. Caselli et al. 2002, Tafalla et al. 2004, Fontani et al. 2012)

The need for ALMA (cycle-1)  Few studies with linear resolution 1500 – 2000 AU so far  Current facilities (except ALMA) cannot reach the requested sensitivity (0.2 M ~ Jeans mass) in reasonable integration times for many sources  ALMA in cycle-1 offers: (1) the sensitivity and (2) the angular resolution appropriate for this project …but finding good targets is challenging!

Initial sample: 95 millimeter continuum clumps, MSX-dark The sample Initial sample: 95 millimeter continuum clumps, MSX-dark (Fontani+2005; Beltrán+2006; Fontani+2012; Sánchez-Monge+2013; Giannetti+2014) 1.2 mm + MSX @ 21 mm 1.2 mm + MSX @ 8 m 1.2 mm + MSX @ 8 mm Courtesy M. Beltran

The sample Selection criteria: 1. Potential sites of massive star formation 2. Cold and chemically young 3. Not blended 4. Dense 1. Mass, N(H2), Σ(H2) > threshold values for massive star formation 2. CO depletion factor fD ≥ 7 3. Clumps isolated, or separated by more than the SIMBA HPBW from other clumps and signposts of star formation activity 4. Detection in the (non-depleted) high-density gas tracer N2H+

The sample 11 entries 1. Potential sites of massive star formation 2. Cold and chemically young Fontani+12, MNRAS, 423, 2342

4. Dense 3. Not blended SIMBA 1.2 mm + Spitzer 24 μm APEX N2H+(3-2), towards SIMBA peaks Beltràn+06, A&A, 423, 2342 Fontani+12, MNRAS, 423, 2342 HPBW ~ 24’’ HPBW ~ 19’’

Immediate objective Goals: 1- CORE POPULATION (mass, number, geometric distribution) 2- KINEMATICS at a linear resolution comparable to the typical fragment separation (~ 1000 A.U.) Tracers: 1- Continuum @ 280 GHz; 2- N2H+ (3-2) , ncrit ~ 3x106 cm-3 Instrument configuration: C32-5, θ~0.27’’ @ 280 GHz Integration time: 20 minutes o. s. (3σ~0.27 mJy, i.e. 0.07 M)

What we expect to see…. μ = (M/Φ)/(M/Φ)crit μ = 2 , dominant magnetic support μ = 130, faint magnetic support μ = (M/Φ)/(M/Φ)crit 280 GHz cont. N2H+ (3-2) Model output (Hennebelle+11, Commerçon+12) CASA Simulations (θ ~ 0.27’’, 20 mins, cycle-1)

Project postponed to cycle-2……