Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.

Slides:



Advertisements
Similar presentations
Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
Advertisements

IDENTIFICATION OF THE CAGE, PRISM, AND BOOK ISOMERS OF WATER HEXAMER AND THE PREDICTED LOWEST ENERGY HEPTAMER AND NONAMER CLUSTERS BY BROADBAND ROTATIONAL.
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
Techniques for High-Bandwidth (> 30 GHz) Chirped-Pulse Millimeter/Submillimeter Spectroscopy Justin L. Neill, Amanda L. Steber, Brent J. Harris, Brooks.
Gas Analysis by Fourier Transform Millimeter Wave Spectroscopy Brent J. Harris, Amanda L. Steber, Kevin K. Lehmann, and Brooks H. Pate Department of Chemistry.
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Molecular Spectroscopy Symposium
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Waveguide Chirped-Pulse FTMW Spectroscopy Steven T. Shipman, 1 Justin L. Neill, 1 Brett Kroncke, 1 Brooks H. Pate, 1 and P. Groner 2 1 University of Virginia.
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Waveguide Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrum of Allyl Chloride Erin B. Kent, Morgan N. McCabe, Maria A. Phillips, Brittany P.
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.
Pure Rotational and Ultraviolet-Microwave Double Resonance Spectroscopy of Two Water Complexes of para-methoxyphenylethylamine (pMPEA) Justin L. Neill,
Microwaves are not just for Cooking! Nicholas R. Walker University of Bristol by 1 30 th January,
Chirped-Pulse Fourier Transform mm-Wave Spectroscopy from GHz Brent J. Harris, Amanda L. Steber, Justin L. Neill *, Brooks H. Pate University of.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
Kelly Hotopp June 22, 2010 Purdue University.  Demonstration of 2D CP-FTMW spectroscopy ◦ Non-Selective Excitation ◦ Selective Excitation  2D CP-FTMW.
Water clusters observed by chirped-pulse rotational spectroscopy: Structures and hydrogen bonding Cristobal Perez, Matt T. Muckle, Daniel P. Zaleski, Nathan.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Spectral Simplification Methods Development Using Waveguide Chirped-Pulse Fourier Transform Microwave Spectroscopy Erin Kent, Steven Shipman New College.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
R. D. Suenram, Justin Lindsay Neill, Jason J. Pajski, Gordon G. Brown, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Internal Rotation in CF 3 I  NH 3 and CF 3 I  N(CH 3 ) 3 Probed by CP-FTMW Spectroscopy Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 66.
Amanda L. Steber, Brent J. Harris, Justin L. Neill, Kevin K. Lehmann, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
Bri Gordon Steven T. Shipman New College of Florida
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Broadband Microwave Spectroscopy and Automated Analysis of 12 Conformers of 1-Hexanal Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin L.
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Fast Sweeping Direct Absorption (sub)Millimeter Spectroscopy Based on Chirped Pulse Technology Brian Hays 1, Steve Shipman 2, Susanna Widicus Weaver 1.
Millimeter Wave Spectroscopy of Rydberg States of Molecules in the Region of GHz David Grimes, Yan Zhou, Timothy Barnum, Robert Field Department.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Microwave Spectra of cis-1,3,5- Hexatriene and Its 13 C Isotopomers; An r s Substitution Structure for the Carbon Backbone Richard D. Suenram, Brooks H.
Fast Sweeping Double Resonance Microwave - (sub)Millimeter Spectrometer Based on Chirped Pulse Technology Brian Hays 1, Susanna Widicus Weaver 1, Steve.
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
MEASURING CONFORMATIONAL ENERGY DIFFERENCES USING PULSED-JET MICROWAVE SPECTROSCOPY CAMERON M FUNDERBURK, SYDNEY A GASTER, TIFFANY R TAYLOR, GORDON G BROWN.
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Verbenone
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) INVESTIGATIONS INTO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE; A MOLECULE OF ATMOSPHERIC.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
THE STRUCTURE OF PHENYLGLYCINOL
Michal M. Serafin, Sean A. Peebles
Presentation transcript:

Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven T. Shipman, 1 Justin L. Neill, 1 Brooks H. Pate, 1 and Alberto Lesarri 2 1 University of Virginia 2 Universidad de Valladolid

Overview CP-FTMW Spectrometer and Stark Cage OCS, isotopomers and clusters Suprane and hexanal

7.5 – 18.5 GHz CP-FTMW Spectrometer For more information, see: Rev. Sci. Inst. 79, (2008). 1)AWG generates a chirped pulse that is upconverted to 7.5 – 18.5 GHz and amplified. 2)The pulse is broadcast into the vacuum chamber where it interacts with molecules in a pulsed jet. 3)The FID is amplified, mixed down, and finally digitized on a fast oscilloscope.

Why Stark and Why CP-FTMW Stark? Added information to help connect assigned spectra to structures from ab initio. Particularly important for conformationally rich systems. With knowledge of dipoles, intensities in spectra can be converted into population differences, allowing for tests of conformational energy ordering. Chirped-pulse FTMW measurements are highly multiplexed, allowing: 1) simultaneous dipole measurements on multiple species 2) efficient Stark fits for each species (many lines followed at once) I II III

The Stark Cage Emilsson, T.; Gutowsky, H.S.; de Oliveira, G.; Dykstra, C.E., J. Chem. Phys. 112, 1287 (2000). The cage is a voltage divider – many small voltage drops rather than a single large one. Expansion is unaffected and nozzle is in a low voltage region. The cage can be left in the instrument at all times! Two high voltage power supplies required (+ and – voltage).

Effects of Field Inhomogeneity – OCS Molecules in inhomogeneous region do not contribute to FID at long times. Intensity decrease is roughly linear with shift from field-free conditions. 0.2% OCS in He/Ne 4k shots, 20  s FID

Parallel Plates vs. Cage – OCS The cage vastly improves the field homogeneity relative to parallel plates. 0.2% OCS in He/Ne 4k shots, 20  s FID

Simultaneous Isotopomer Measurements

Ne-OCS Clusters All of these come from the same data set, 4k shots (~15 minutes) per field strength. Normal species OCS is used as an internal field calibrant.

Dipole moments of OCS species Species  # of linesStd. Dev. (kHz) OCS OC 34 S0.7153(9)74.0 O 13 CS0.7140(10)74.6 OC 33 S0.7146(7) OCS0.7150(10)74.5 O 13 C 34 S0.7121(7)73.0 OC 36 S0.7156(25)65.4 OCS (100 vib)0.6939(12)75.2 OCS (200 vib)0.678(7)56.7 OC 34 S (100 vib)0.6948(21)79.0 Dipole moments fit with QSTARK using data at 1, 2, 3, 4, 6, 8, and 12 kV.

Trifluoropropyne Dipole Calibration Best fit slope: (4) MHz / (V/cm) R 2 = Calc. dipole: D Lit. dipole: D * * Kasten, W.; Dreizler, H., Z. Naturforsch. A, 39, 1003 (1984). OCS gives the local field strength, used to determine TFP’s dipole moment from its first-order shifts. TFP is used as a calibrant for the 2 – 8 GHz spectrometer (WF08). First-order shifts in 8 – 18 GHz help to reduce field strength uncertainty – 2 12 M F = – 2 11 M F = 2

Suprane Stark 8 45 – MHz 8 36 – MHz Overall fit included 132 transitions, with an OMC of 8.9 kHz. Fit:  A = (4) D,  B = (22) D,  C = (21) D NIST (51 lines):  A = 1.483(2) D,  B = 0.761(2) D,  C = 0.242(4) D NOTE: Uncertainties are fit uncertainties; we seem to be systematically low (~1%).

Hexanal – Field-Free Spectrum Only the dominant 6 conformers are shown in the simulations. To date 10 conformers have been assigned, along with C species. More “deep averaging” spectra of hexanal, 1-heptene, and suprane in RH06. (x75)

Hexanal – Field-Free Spectrum Only the dominant 6 conformers are shown in the simulations. To date 10 conformers have been assigned, along with C species. More “deep averaging” spectra of hexanal, 1-heptene, and suprane in RH06. (x5000)

Hexanal Conformers I II III IV V VI 180, 180, 180, 0 54 cm , 180, 71, 6 0 cm , 64, 175, cm -1 64, 176, 180, cm -1 63, 176, -72, cm -1 64, 175, 71, cm -1

Stark Spectrum of Hexanal – V/cm 600k shots V/cm I III II V

Stark Spectrum of Hexanal – V/cm I II III IV

Hexanal Dipoles –  A,  B,  C  A (D) (exp)  B (D) (exp)  C (D) (exp)  A (D) (calc*)  B (D) (calc*)  C (D) (calc*) # of lines OMC (kHz) I (27) (21) II (22) (5) (7) III1.918 (8) (6) (7) IV0.983 (13) (10) (15) V (22) (10) (15) VI0.581 (7) (8) 0.19 (4) * MP2 / 6-31G(d)

Hexanal Dipoles –  T, ,   T (D) (exp)  (º) (exp)  (º) (exp)  T (D) (calc*)  (º) (calc*)  (º) (calc*) # of lines OMC (kHz) I II III IV V VI * MP2 / 6-31G(d) Note: Assumes dipole is in first octant as signs are not accessible experimentally.

MP2/6-31G(d) Dipoles Dipole moments are not as bad as they might seem. Convert (  A,  B,  C ) measured and predicted into (  T, ,  ).  T,meas  87.7% of  T,pred  meas   pred – 3.4º  meas   pred – 0.8º Need to see how well this holds up with more testing!

Future Directions Measurements on 1-heptene, strawberry aldehyde, (FA) 3 New cage design to accommodate multiple pulsed nozzles Measurements on laser-prepared excited states (Ar-DF)

Acknowledgements Special Thanks: Tom Fortier and Tektronix The Pate Lab Leonardo Alvarez-Valtierra Matt Muckle Justin Neill Sara Samiphak Collaborators Lu Kang Zbigniew Kisiel Rick Suenram Nick Walker Li-Hong Xu Funding NSF Chemistry CHE NSF CRIF:ID CHE