I. Physical Properties Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no (very small) volume. have elastic collisions. are.

Slides:



Advertisements
Similar presentations
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Advertisements

I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume have elastic collisions are in constant,
III. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume have elastic collisions are in constant,
I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as described.
I. Physical Properties (p )
Behavior of Gases & Kinetic Molecular Theory Unit 7 – Phase of Matter.
I. Physical Properties Ch 12.1 & 13 Gases. Kinetic Molecular Theory 1. Particles of matter are ALWAYS in motion 2. Volume of individual particles is 
Lesson 1: The Nature of Gases UNIT 9 – GAS LAWS Chapter 13 and 14.
Think About This… Gas Atmosphere This is a U-Tube Manometer. The red stuff is a liquid that moves based on the pressures on each end of the tube. Based.
Physical Properties Unit 5: Gases Unit 5: Gases. StandardsStandards b 4a. Students know the random motion of molecules and their collisions with a surface.
Kinetic Molecular Theory and Gas Laws Day 1. Kinetic-Molecular Theory – explains how particles in matter behave 1. All matter is composed of small particles.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
C. Johannesson I. Physical Properties (p ) Ch. 10 & 11 - Gases.
CH 11 – Physical Characteristics of Gases: Objectives Describe how the kinetic-molecular theory of matter explains ideal gases Differentiate between ideal.
Gases. Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-line motion. don’t attract or repel each.
Properties and Measuring Variables Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are.
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
A theory concerning the thermodynamic behavior of matter, especially the relationships among pressure, volume, and temperature in gases. Kinetic Molecular.
Gas Laws. A. Characteristics of Gases Gases expand to fill any container. –random motion, no attraction Gases are fluids (like liquids). –no attraction.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Ch Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
? Gases Chapter 4. ? Kinetic Molecular Theory Particles in an Ideal Gases…  have no volume.  have elastic collisions.  are in constant, random, straight-line.
Chapter 11 The Nature of Gases & Measuring Gases Pages
AssignmentAssignment b Complete pre-assessment test. b Read Chapter 10, pp , and define vocabulary.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have elastic.
Chapter 5 Gas- matter that has no definite shape or volume, takes both the shape and volume of its container Kinetic Theory of Gases -states that tiny.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
I. Physical Properties. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
I. Physical Properties Gases. A. Kinetic Molecular Theory b kinetic-molecular theory: (def) theory of the energy of particles and the forces that.
Physical Properties Ch. 10 & 11 - Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
Lesson 1: Basic Terminology This lesson reviews terms used to describe the properties and behavior of gases. NEXT MAIN MENU.
Gases Gas Animations. Kinetic Molecular Theory Particles in an ideal gas… –have no volume. –have elastic collisions. –are in constant, random, straight-line.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Properties of Gases Gases expand to fill any container. –random motion, no attraction Gases are fluids (like liquids). –particles flow easily Gases have.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have.
Gas Laws! Introduction to Gas Laws.. Key Terms  Pressure: the amount of force per unit area of surface  Newton: the SI unit for force  Pascal: the.
The Property of Gases – Kinetic Molecular Theory explains why gases behave as they do
Ideal Gas Law Gases. C. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids).
I. Physical Properties (p. 399 – 402, ) Ch Gases Gases notes #1 - gas properties.ppt.
I. Physical Properties I. Gases I. Gases. Nature of Gases b Gases have mass. b They can be compressed. b They completely fill their containers. b Representative.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have mass but no definite volume. have elastic collisions.
Gas Laws Chapter 12. Gases assume the volume and shape of their containers. Gases are the most compressible state of matter. Gases will mix evenly and.
Gases I. Physical Properties.
A. Kinetic Molecular Theory
Gases.
I. Physical Properties (p )
Ch.12- Gases I. Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p )
Gases I. Physical Properties.
I. Physical Properties (p )
Gas laws.
Ch Liquids & Solids III. Changes of State C. Johannesson.
Gases Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p. 303 – 312 in school)
Gases I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as.
Ch Gases I. Physical Properties.
Chapter 1 Lesson 3 Mrs. Brock RJMS
Unit 8 - Gases Chapter 13.1 and Chapter 14.
Ch Gases I. Physical Properties.
Ch Gases I. Physical Properties.
Gases Physical Properties.
Gases Describing Gases.
Chapter 7-1, 7-2.
Gases and Laws – Unit 2 Version
Presentation transcript:

I. Physical Properties Gases Gases

A. Kinetic Molecular Theory b Particles in an ideal gas… have no (very small) volume. have elastic collisions. are in constant, random, straight- line motion. don’t attract or repel each other. have an avg. KE directly related to Kelvin temperature.

C. Characteristics of Gases b Gases expand to fill any container. random motion b Gases are fluids (like liquids). b Gases have very low densities. lots of empty space

C. Characteristics of Gases b Gases can be compressed. lots of empty space b Gases undergo diffusion & effusion. random motion

D. Temperature b Always use absolute temperature (Kelvin) when working with gases. ºF ºC K K = ºC + 273

E. Pressure Which shoes create the most pressure?

7 Atmospheric Pressure b Atmospheric pressure b is the pressure exerted by a column of air from the top of the atmosphere to the surface of the Earth. b Copyright © 2009 by Pearson Education, Inc.

E. Pressure b Barometer measures atmospheric pressure Mercury Barometer Aneroid Barometer

E. Pressure b Manometer measures contained gas pressure U-tube ManometerBourdon-tube gauge

E. Pressure b KEY UNITS AT SEA LEVEL kPa (kilopascal) 1 atm 760 mm Hg 760 torr 14.7 psi

F. STP Standard Temperature & Pressure 0°C 273 K 1 atm kPa -OR- STP

G. Volume b Volume- The space occupied by the gas. They have an indefinite volume, they will fill any container. b Units of measure: L liter or ml milliliter b At STP, one mole of gas occupies 22.4 L of volume