IB Biology 2009-2010 Topic 11 Human Health 11.3 The Kidney.

Slides:



Advertisements
Similar presentations
BIOLOGY Topic 12.
Advertisements

Excretion and the Kidneys
David Sadava H. Craig Heller Gordon H. Orians William K. Purves David M. Hillis Biologia.blu C – Il corpo umano Excretory System and Salt and Water Balance.
12.2The human Kidney Mrs. Jackie. Intro Human possess two kidneys Human possess two kidneys Situated at the back of the abdominal cavity Situated at the.
F214: Communication, Homeostasis and Energy 4. 2
The Kidney.
The nephron and kidney function
The Urinary System Excretion: The removal of metabolic wastes from the
Freshwater animals show adaptations that reduce water uptake and conserve solutes Desert and marine animals face desiccating environments that can quickly.
The Kidney.
Presentation title slide
The Urinary System Removing waste, balancing blood pH, and maintaining water balance.
Renal (Urinary) System
Urinary System.
KIDNEY FUNCTIONS URINE FORMATION
The kidney Topic 11.3.
Human Health & Physiology
The Kidney.
Topic 11: Human Health and Physiology
Objectives of lesson 1. Outline the structure & associated blood supply & draw a diagram of the nephron. 2. Explain urine formation, including: Bowman's.
Formation of Urine.
Unit O: Urinary System.
4/7/08 Urinary System Chapter 24 – Day 2. 4/7/08 Review Nephron Structure  Network with blood vessels  Two types of nephrons ♦Cortical Nephrons – loop.
11.3 The kidney Objectives Define excretion.
The Kidneys and Homeostasis Homeostasis is the ability to control the internal environment to enable organisms to be independent of the external environment.
Excretory System.
11.3 Excretion: The Kidney Define Excretion Metabolic reactions generate waste products. Waste products need to be mitigated and eliminated. This.
11.3 THE KIDNEY Topic 11 Human Health & Physiology.
Define Excretion Excretion refers to the removal of the waste products of metabolic pathways from the body. This can occur in a number of ways but.
Chapter 13 - Excretory System
Controlling the Internal Environment Chapter 40. The Big Picture The excretory system is a regulatory system that helps to maintain homeostasis within.
F214: Communication, Homeostasis and Energy The Kidney
Urinary System. Urinary System Function The function of the urinary system is to help maintain the appropriate balance of water and solutes in the bodies.
EXCRETORY SYSTEM.
Excretion. Syllabus links Plant Excretion The role of leaves as excretory organsof plants The Excretory System in the Human Role of the excretory.
Learning Objectives EXCRETION Recall the origin of CO 2 and O 2 as waste products of metabolism. Recall that the lungs, kidneys and skin are organs of.
Excretion and the Kidney HL (Paper 1 and 2). Excretion What is excretion? – Elimination of waste from the metabolic processes, to maintain homeostasis.
Reabsorption In the Kidney. Objectives 1)Describe the general structure of the kidney, the nephron, and associated blood vessels 2)Explain the functioning.
Objectives – What you will need to know from this section  Outline the structure & associated blood supply & draw a diagram.  Explain urine formation,
Kidney 1. Functions: removal of metabolic waste products regulation of the water content of body fluids regulation of pH of body fluids regulation of chemical.
Module 11: Human Health and Physiology II 11.3 The Kidney.
Urinary System.
11.3 The kidney and osmoregulation Understanding: -Animals are either osmoregulators or osmoconformers -The Malpighian tubule system in insects and the.
11.3.1, , Kidney and Excretion. Draw the kidney A- Renal Vein B- Renal Artery C- Ureter D- Medulla E- Pelvis F- Cortex.
Biology HL Mrs. Ragsdale.  Excretion – removal of waste products from the body leftover from metabolic pathways  Produce urine  Osmoregulation – control.
Topic 11 Animal Physiology 11.3 The Kidney and Osmoregulation.
Excretion The removal from the body of the waste products of metabolism Includes removal through the lungs, skin, urinary system and kidney Done through.
IGCSE BIOLOGY SECTION 2 LESSON 6. Content Section 2 Structures and functions in living organisms a) Levels of organisation b) Cell structure c) Biological.
TOPIC 6 & 11 HUMAN PHYSIOLOGY 11.3 The Kidney & Osmoregulation.
Nitrogenous Wastes Ammonia- fish Urea- mammals Uric acid- birds.
The Kidney. The Structure of the Kidney There are three distinct regions based on the distribution of the different sections of the nephron. The human.
Osmolarity Osmolarity is the solute concentration of a solution Animals are either: Osmoregulators: maintain a constant internal solute concentration.
The Nephron as a Unit of Kidney Function Honours
Topic 11.3 The Kidney & Osmoregulation
Urinary System 21 April 2017.
Human Health & Physiology
Chapter 10 – Excretion.
The Kidney.
The nephron.
11.3 – The Kidney & Osmoregulation
11.3 The Kidney and Excretion Excretion. The Kidney
11.3 – The Kidney & Osmoregulation
The Kidney Topics 11.3.
Ultrafiltration and Selective Reabsorption
Topic 11.3 The Kidney & Osmoregulation
© SSER Ltd..
Chapter 44 Osmoregulation and Excretion
The Kidney.
Bozeman Osmoregulation - 197
H The Nephron as a Unit of Kidney Function
Presentation transcript:

IB Biology Topic 11 Human Health 11.3 The Kidney

IB Biology Define excretion. Excretion is the removal from the body of the waste products of metabolic pathways  Nitrogen wastes from digestion of proteins  Nitrogen wastes are toxic  Ammonia (fish – H 2 O can dilute)  Urea (Humans, most other mammals)  Uric Acid (insoluble – birds, reptiles)

IB Biology Diagram of the kidney. Two kidneys commonly referred to as left and right kidney.  Each has an arterial blood supply  (the left and right renal arteries)  (branches of the aorta)  Each has a vein  (left and right Renal Vein)  returns filtered blood to the Vena Cava  The urine produced is transported by each ureter to the bladder.

IB Biology Kidney Structure  The photograph is of a large pig kidney. There are three distinct regions based on the distribution of the different sections of the nephron. The human kidney contains approx 106 nephrons.

IB Biology Three Regions of Kidney  Cortex: Lighter brown colour  contains the Malpighian bodies  the capsules that contains Bowman's capsule and a glomerulus at the expanded end of a nephron.  also the proximal and distal convoluted tubules and the upper sections of collecting ducts.  Medulla: darker, redder region  composed of loops of henle  lower sections of the collecting ducts.  seems to form triangular regions which are called the pyramids.  Pelvis:  a cavity which collects the urine from the open ends of the collecting ducts.  The nephrons open on the margin of the pyramids and pelvis.  The white tissue forms a funnel called the ureter which conducts the urine to the bladder.

IB Biology Glomerulus structure. a) Afferent arteriole a branch of the renal artery. (b)The Malpighian Body.  The Bowman's capsule (renal capsule)  The glomerulus is a multiple branching of the afferent arteriole before rejoining to the efferent arteriole.  Together the Bowman's capsule and the glomerulus are known as the Malpighian body. (c) Efferent Arteriole (narrower than afferent) join together to form the renal vein. (d) Proximal Convoluted Tubule  (14mm long / diameter 60um)  longest section of the nephron. (e) Loop of Henle. (f) Distal Convoluted Tubule. (g) Collecting Duct  opens into the Pelvic region.

IB Biology Ultrafiltration.  Ultrafiltration, Selective Reabsorption and Urine formation  The labels of the processes on the left side correlate with the a region of the nephron on the right. Note however that selective reabsorption of substances into the blood takes place along the entire length of the nephron.  Ultrafiltration: formation of kidney filtrate

IB Biology  This structure is called the malpighian body ( structure( b) in the diagram above) and is the location of Ultrafiltration.  The glomerulus increases blood pressure by forming narrow branches (also an increase in surface area for filtration).  The pressure is maintained by the narrower efferent arteriole which restricts the outflow of blood from the glomerulus.  The expanded end of the nephron forms an invaginations to form a cup that accommodates the glomerulus  The efferent blood vessel associated itself with the other regions of the nephrons for selective reabsorption.

IB Biology Glomerulus  High Pressure is generated in the glomerular knot.  Fenestrations (gaps) between the cells that form the glomerula blood vessel create a path of low resistance out of the glomerulus.  The basement membrane is the filtration barrier. Cells and large plasma protein macromolecules cannot pass through this structure.  Podocytes for the inner membrane of the Bowman's capsule. The interdigitation of the podocyte extension creates gaps for the filtrate to pass between the cells

IB Biology Alternative diagram of the podocyte/ arteriole structure:  The podocytes  have many fine arm-like projections which wrap around the arterioles.  Although the fenestration's of the arteriole allow large molecules to leave the blood vessel  large molecules are largely prevented from further movement by the small spaces between the podocyte extensions.  fine mesh work of the basement membrane (lamina) that will prevent any large molecules such as proteins from leaving the blood.

IB Biology Define Osmoregulation.  Osmoregulation is the control of the water balance of the blood, tissue or cytoplasm of a living cell.  The water content of body fluids has to be controlled such that the movement of water to and from cells can changes be controlled.  The body experiences external and internal changes such as drinking water availability, sweating and the accumulation of salts that require adjustments in the water content of blood, tissues and cytoplasm.  Osmoregulation is under the control of receptors in the hypothalamus.  In responses to changes the hypothalamus controls the sensation of thirst and also the endocrine secretion of anti-diuretic hormone.(ADH).  ADH is secreted from the pituitary and causes the opening of cell membrane pores called aquaporins which allows water reabsorption into the blood.  This control mechanism is covered in more detail in Option H

IB Biology Selective Reabsorption  The process of control and regulation in the kidney begins with a non discriminating filtration (ultrafiltration) that removes just as many useful substances as harmful ones from the blood to make filtrate.  The kidney then takes back from the filtrate to the blood those substances that it still requires in the blood.(Selective Reabsorption)  The beauty of the way the kidney works is that it is able to control how much of a substance it reabsorbs back into the blood (Regulation)

IB Biology Proximal convoluted tubule.  Note that the PCT has a microvilli cell border to increase the SA for absorption from filtrate. There are also a large number of mitochondria which produce the extra ATP required for active transport.  1. All glucose, all amino acids and 85% of mineral ions are reabsorbed by active transport from the filtrate to the tissue fluid. They then diffuse into the blood capillaries.  2. Small proteins are reabsorbed by pinocytosis, digested, and the amino acids diffuse into the blood.  3. 80% of the water is reabsorbed to the blood by osmosis.  4. As urea molecules are so small and carry no charge that they diffuse passively through the cell membrane. In part this explains why not all urea is excreted as blood passes through the kidney.

IB Biology Loop of Henle  Function  create a salt bath concentration in the surrounding medullary fluid.  results in water reabsorption in the collecting duct  Results inreduction in the filtrate volume.

IB Biology Loop of Henle  Mechanism: 1. There is a concentrated gradient down through the medullary fluid (a). 2. The descending limb is permeable to water but not to salt. 3. Filtrate enters the loop hypotonic to the medullary fluid so water is lost(b). 4. The concentration difference between medullary fluid and the filtrate is small. 5. The amount of water lost at each stage is small but accumulates on descent. 6. The water is lost but immediately taken up by the blood. 7.. Filtrate volume reduces and filtrate salt concentration increases. 8. The base of the loop is impermeable (c)

IB Biology Fluid turns the impermeable loop.  1.The filtrate moves up the ascending limb. 2. The ascending limb is permeable to salt. 3.The ascending limb is impermeable to water. 4. The filtrate is slightly more concentrated than the surrounding fluid. 5. There is a small but accumulating loss of salt ( Na+and Cl-)at each level. 6. The concentration of the filtrate is gradually reduced. 6. The medullary gradient is maintained through exchange with the surrounding blood vessels  Note that this has resulted in: 1. Filtrate entering and leaving the loop of henle are approx isotonic 2. Reduced volume of the filtrate 3. Creation and Maintenance of the medullary salt bath gradient

IB Biology  The concentration gradient of the medullary fluid brings about the removal of water from the collecting duct by osmosis.  The permeability of both Distal Convoluted Tubule (DCT) and the Collecting tube(CT) can be increased by the hormone ADH (Vasopressin).  The cell membranes of these tubules do not allow the movement of water by simple diffusion. Rather pores called Aquaporin can be opened the action of ADH.  The DCT is involved in other homeostatic functions such as the secretion of H+in pH regulation or K+ in salt regulation.

IB Biology Comparison of glomerular filtrate with urine.

IB Biology  Urea  collecting duct is permeable to both water which as the filtrate descends this collecting duct is removed concentrating the filtrate (urine).  collecting duct also leaks some urea which to the kidney interstitial fluid.  Some of this lost urea is reabsorbed by the ascending limb of the loop of henle but not all, hence the 50% reabsorption.  This cycling of urea is an important feature of the kidneys ability to produce a concentration gradient through the medulla.  Uric acid  fairly toxic molecule (main nitrogenous excretion in birds)  largely removed from blood and tissue fluids.  Glucose  100% reclaimed by selective reabsorption.  The presence of glucose in the urine would be an indication of diabetes.  Amino acids  all selectively reabsorbed in the nephron and then undergo deamination in the liver (urea excretion).  Proteins and other macromolecules  should not be filtered in the Bowman's capsule  any presence in urine is usually regarded as an indicator of high blood pressure and damage to the basement membrane (nephritis) of the bowman's capsule.