 Centre National de la Recherche Scientifique  Institut Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix Viallet.

Slides:



Advertisements
Similar presentations
SAP WM.
Advertisements

 Centre National de la Recherche Scientifique  Institut National Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix.
Who is Diversified Logistics? We are a Family of Companies Diversified Logistics – Parent Company over: –F–First Coast Pallets – our original company.
Anne-Laure Ladier*, Gülgün Alpan*, Allen G. Greenwood ● *G-SCOP, Grenoble INP, France ● Department of Industrial Engineering, Mississippi State University.
Chapter 3 Workforce scheduling.
Thèse présentée par Anne-Laure Ladier et dirigée par Gülgün Alpan Soutenue publiquement le vendredi 21 novembre 2014 Devant un jury composé de: Mme Luce.
Leena Suhl University of Paderborn, Germany
 Centre National de la Recherche Scientifique  Institut National Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix.
Multi-Objective Optimization NP-Hard Conflicting objectives – Flow shop with both minimum makespan and tardiness objective – TSP problem with minimum distance,
 Centre National de la Recherche Scientifique  Institut National Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix.
PLANT SIMULATION WAREHOUSING & LOGISTICS LIBRARY CASE STUDIES Auke Nieuwenhuis MSc October 2012.
CREW SCHEDULING Past and Future Jacques Desrosiers HEC & GERAD Montréal, Canada.
Linear Programming Using the Excel Solver
Crew Scheduling Housos Efthymios, Professor Computer Systems Laboratory (CSL) Electrical & Computer Engineering University of Patras.
CE884 – 19 th February 2010 Industrial Applications of Constraint Satisfaction Dr. James Borrett Visiting Fellow, University of Essex & Global Optimum.
Multi-scale Planning and Scheduling Under Uncertain and Varying Demand Conditions in the Pharmaceutical Industry Hierarchically Structured Integrated Multi-scale.
National Institute of Science & Technology TECHNICAL SEMINAR-2004 Dipanwita Dash [1] UNIT COMMITMENT Under the guidance of Mr. Debasisha Jena Presented.
 Centre National de la Recherche Scientifique  Institut National Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix.
1 Logic-Based Methods for Global Optimization J. N. Hooker Carnegie Mellon University, USA November 2003.
© J. Christopher Beck Lecture 29: Supply Chain Scheduling 3.
Supply Chain Design Problem Tuukka Puranen Postgraduate Seminar in Information Technology Wednesday, March 26, 2009.
22–1. 22–2 Chapter Twenty-Two Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
1 Planning and Scheduling to Minimize Tardiness John Hooker Carnegie Mellon University September 2005.
Cross-Docking Distribution Center (DC)
A hybrid heuristic for an inventory routing problem C.Archetti, L.Bertazzi, M.G. Speranza University of Brescia, Italy A.Hertz Ecole Polytechnique and.
Carl Bro a|s - Route 2000 Solving real life vehicle routing problems Carl Bro a|s International consulting engineering company 2100 employees worldwide.
Linear Programming Example 2 Alternate Optimal Solutions.
Decision for the location of Intermodal terminals in a rail-road network Anupam Kulshreshtha IIM - Lucknow.
CAPS RoutePro CAPS Logistics Overview RoutePro Dispatcher Features.
Tomo-gravity Yin ZhangMatthew Roughan Nick DuffieldAlbert Greenberg “A Northern NJ Research Lab” ACM.
 Centre National de la Recherche Scientifique  Institut National Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix.
AGIFORS, 5/28/03 Aircraft Routing and Crew Pairing Optimization Diego Klabjan, University of Illinois at Urbana- Champaign George L. Nemhauser, Georgia.
 Centre National de la Recherche Scientifique  Institut National Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix.
ISE 195 Introduction to Industrial Engineering. Lecture 3 Mathematical Optimization (Topics in ISE 470 Deterministic Operations Research Models)
A PC-based Planning System Reports and Functionality AutoScheduler Copyright © 2002.
Optimization Models Mathematical optimization models usually contain an objective (what to do) constraints (the rules that must be followed). Also referred.
 Centre National de la Recherche Scientifique  Institut National Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix.
Cross-Docking
Workforce scheduling – Days off scheduling 1. n is the max weekend demand n = max(n 1,n 7 ) Surplus number of employees in day j is u j = W – n j for.
 Centre National de la Recherche Scientifique  Institut National Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix.
Airline Crew Scheduling Problem ‍‍(CSP) Ahmad Khayer Dastjerdi
 Centre National de la Recherche Scientifique  Institut National Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix.
Presented By Dr. Mohsen Alardhi College of Technological Studies, Kuwait April 19 th,2009.
An Integrated Approach to Load Matching, Routing, and Equipment Balancing Problem Sarah Root June 8, 2005 Joint work with advisor Amy M. Cohn.
Transportation Planning EIN 5346 Enterprise Systems Optimization Fall, 2015.
Main Function of SCM (Part II). Main Functions  Procurement (supplier selection, optimal procurement policies, etc.)  Manufacturing (plant location,
Intelligent Supply Chain Management Course Transportation Scheduling
Modeling issues when using simulation to test the performance of mathematical programming models under stochastic conditions Anne-Laure LadierUniv. Lyon.
 Centre National de la Recherche Scientifique  Institut National Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix.
Welcome Unit 6 Seminar MM305 Wednesday 8:00 PM ET Quantitative Analysis for Management Delfina Isaac.
An Item’s JOURNEY How a coffee maker gets to a customer…..
Transportation Planning EIN 5346 Enterprise Systems Optimization Fall, 2015.
The integrated dial-a-ride problem with timetabled fixed route service Marcus Posada, Henrik Andersson and Carl Henrik Häll.
TEMPLATE DESIGN © Cross-Dock Modeling and Analysis AUTHOR: Mehdi Charfi ADVISORS: Dr. Peter Hahn and Dr. Monique Guignard.
Applications of Tabu Search OPIM 950 Gary Chen 9/29/03.
U NIT C REWING FOR R OBUST A IRLINE C REW S CHEDULING Bassy Tam Optimisation Approaches for Robust Airline Crew Scheduling Bassy Tam Professor Matthias.
INTRO TO SAP EWM.
Introduction to Linear Programs
Lorenzo Ros Mª Victoria de la Fuente Norina Szander
Facility Logistics Simulation at a Large Retailer
Introduction to Materials Management
Manpower Planning: Task Scheduling
Multi-Agent Based Truck Scheduling Using Ant Colony
Modeling Scheduling Problems
Introduction to Scheduling Chapter 1
Planning and Scheduling in Manufacturing and Services
Sample ‘Scheduling Process’
Automated Warehouse Planning System
The Warehouse Design and Control Problem
SCM Master Data - 2 Master Data for Distribution & Production Processes EGN 5346 Logistics Engineering Fall, 2015.
Presentation transcript:

 Centre National de la Recherche Scientifique  Institut Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix Viallet Grenoble Cedex I NTEGRATING TRUCK SCHEDULING AND EMPLOYEE ROSTERING IN A CROSS - DOCKING PLATFORM – AN ITERATIVE APPROACH Anne-Laure Ladier, Gülgün Alpan

C ROSS - DOCKING O PERATIONS 2 Less than 24h of temporary storage Docking Unloading Control Transfer Loading 1 color = 1 client ContextTruck schedulingIntegrated pbConclusionEmpl rostering

G ENERAL I DEA 3 How to schedule the trucks and employees together? Van Belle et al. (2012) Ladier et Alpan (2014) Günther et Nissen (2014) Ladier et al. (2014) « The scheduling of the trucks heavily influences the workload for the internal resources » Van Belle et al. (2012) ContextTruck schedulingIntegrated pbConclusionEmpl rostering

CROSS-DOCK TRUCK SCHEDULING Ladier et Alpan (2014)

T RUCK SCHEDULING PROBLEM  Reservation system  Minimize  Quantity put in storage  Dissatisfaction of the transportation providers 10am-12am 6am-8am 9am-12am 6am-7am 6am-9am 11am-12am 7am-10am ContextTruck schedulingIntegrated pbConclusionEmpl rostering 5

D ECISIONS VARIABLES  Number of units moving at each time period:  from each inbound truck to each outbound truck  from each inbound truck to storage  from storage to each outbound truck  Time windows chosen for the trucks ContextTruck schedulingIntegrated pbConclusionEmpl rostering 6

I NTEGER P ROGRAMMING MODEL (IP*) min (  × penalty on the inbound time window chosen +  × penalty on the outbound time window chosen +  × number of pallets put in storage) # trucks present ≤ # doors Pallets move from the present trucks onlyFlow conservation (for each destination) Outbound truck leave when fully loadedEach truck is assigned to exactly 1 time windowStock conservation rule 7 ContextTruck schedulingIntegrated pbConclusionEmpl rostering

EMPLOYEE ROSTERING Ladier et al. (2014)

E MPLOYEE R OSTERING Manpower: 1 st cost center for logistic providers ContextTruck schedulingIntegrated pbConclusionEmpl rostering 9

S EQUENTIAL S OLVING Detailed task allocation Starting/ending time per employees 1 or 2 weeks ¼ hour Weekly timetabling Daily rostering Nb temporary workers Total nb hours worked Exact times Day Hour and shift Ben works 8 hours on Friday Ben works from 9h to 17h on Friday Ben unloads from 9h to 11h15, controls from 11h15 to 12h … MILP1 MILP2 MILP3 ContextTruck schedulingIntegrated pbConclusionEmpl rostering 10

INTEGRATED PROBLEM How to solve both problems in an integrated manner? 11

S EQUENTIAL APPROACH Intuitive approach: Manage external matters first, then internal Input data IPH2 or MILP1 MILP2 MILP3 Workload ContextTruck schedulingIntegrated pbConclusionEmpl rostering 12

I TERATIVE APPROACH : I DEAS Aircraft routing and crew scheduling (Weide et al. 2010) Crew scheduling Aircraft routing The objective function of each module integrates information from the problem solved previously ContextTruck schedulingIntegrated pbConclusionEmpl rostering 13

Linking constraints I TERATIVE APPROACH : PRINCIPLE 14 Workload Capacity contraints Employees first Trucks first ContextTruck schedulingIntegrated pbConclusionEmpl rostering

E MPLOYEES FIRST 15 Input data IP H2 ou MILP1 MILP2 MILP3 Workload Capacity constraints Announced timetable ContextTruck schedulingIntegrated pbConclusionEmpl rostering

T RUCK F IRST 16 Input data IP*H2 or MILP1 MILP2 MILP3 IPH2 or Workload Capacity constraints Announced timetable Workload ContextTruck schedulingIntegrated pbConclusionEmpl rostering

R ESULTS ContextTruck schedulingIntegrated pbConclusionEmpl rostering 17

C ONCLUSION IP H2 MILP1 MILP2 MILP3 ContextTruck schedulingIntegrated pbConclusionEmpl rostering 18

P ERSPECTIVES Optimal solution for the integrated problem?  Adapt an idea from Guyon et al. (2010)  Integrated production scheduling and employee timetabling  Logic-based Benders decomposition  Slave problem = maximum flow problem ContextTruck schedulingIntegrated pbConclusionEmpl rostering 19

 Centre National de la Recherche Scientifique  Institut Polytechnique de Grenoble  Université Joseph Fourier Laboratoire G-SCOP 46, av Félix Viallet Grenoble Cedex T HANK YOU FOR YOUR ATTENTION

B IBLIOGRAPHY  Günther, M., & Nissen, V. (2014). A comparison of three heuristics on a practical case of sub-daily staff scheduling. Annals of Operations Research, 218(1), 201–219.  Guyon, O., Lemaire, P., Pinson, É., & Rivreau, D. (2010). Cut generation for an integrated employee timetabling and production scheduling problem. European Journal of Operational Research, 201(2), 557–567. doi: /j.ejor  Ladier, A.-L., Alpan, G., & Penz, B. (2014). Joint employee weekly timetabling and daily rostering: A decision-support tool for a logistics platform. European Journal of Operational Research, 234(1), 278– 291.  Ladier, A.-L., & Alpan, G. (2014). Crossdock truck scheduling with time windows − Earliness, tardiness and storage policies. Journal of Intelligent Manufacturing. doi: /s  Van Belle, J., Valckenaers, P., & Cattrysse, D. (2012). Cross-docking: State of the art. Omega, 40(6), 827–846.  Weide, O., Ryan, D., & Ehrgott, M. (2010). An iterative approach to robust and integrated aircraft routing and crew scheduling. Computers & Operations Research, 37(5), 833–