Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Review list 2.Bayes’ Rule example 3.CLT example 4.Other examples.

Slides:



Advertisements
Similar presentations
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms 2.Flushes 3.Hellmuth vs. Farha 4.Worst possible beat 5.Jackpot.
Advertisements

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Savage/Tyler, Kaplan/Gazes 2.P(flop a full house) 3.Bernoulli random.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Bayes’ Rule again 2.Gold vs. Benyamine 3.Bayes’ Rule example 4.Variance,
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms. 2.Hellmuth/Gold. 3.Poisson. 4.Continuous distributions.
Lec 18 Nov 12 Probability – definitions and simulation.
1 Discrete Math CS 280 Prof. Bart Selman Module Probability --- Part a) Introduction.
Probability Distributions
1 The game of poker You are given 5 cards (this is 5-card stud poker) The goal is to obtain the best hand you can The possible poker hands are (in increasing.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Straight draws. 2.HW2 clarification. 3.Greenstein vs. Farha AA.
Stat 13, Tue 6/5/ Hand in hw7. 2. Practice problems. Final exam is Thur, 6/7, in class. It has 20 multiple choice questions. Only about 50% are on.
Approximation and Nested Problem. Four players are playing a poker game out of a deck of 52 cards. Each player has 13 cards. Let X be the number of Kings.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw4. 2.Review list 3.Tournament 4.Sample problems * Final.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 0. Collect hw2, return hw1, give out hw3. 1.Project A competition.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterm. 2.Review of Bernoulli and binomial random variables. 3.Geometric.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(cards til 2 nd king). 2.Negative binomial. 3.Rainbow flops examples,
Stat 35: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Expected values and variances. Formula For a discrete random variable X and pmf p(X): Expected value: Variance: Alternate formula for variance:  Var(x)=E(X^2)-[E(X)]^2.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Collect Hw4. 2.Review list. 3.Answers to hw4. 4.Project B tournament.
Engineering Probability and Statistics Dr. Leonore Findsen Department of Statistics.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Collect Hw WSOP main event. 3.Review list.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.hw, terms, etc. 2.WSOP example 3. permutations, and combinations.
Week 21 Conditional Probability Idea – have performed a chance experiment but don’t know the outcome (ω), but have some partial information (event A) about.
Outline for the day: 1.Discuss handout / get new handout. 2.Teams 3.Example projects 4.Expected value 5.Pot odds calculations 6.Hansen / Negreanu 7.P(4.
June 11, 2008Stat Lecture 10 - Review1 Midterm review Chapters 1-5 Statistics Lecture 10.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
Exam 2: Rules Section 2.1 Bring a cheat sheet. One page 2 sides. Bring a calculator. Bring your book to use the tables in the back.
Stat 35b: Introduction to Probability with Applications to Poker Poker Code competition: all-in or fold.   u 
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tues 2/28/12: 1.Midterms back. 2.Review of midterm. 3.Poisson distribution,
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value and pot odds, continued 2.Violette/Elezra example.
Engineering Probability and Statistics Dr. Leonore Findsen Department of Statistics.
Expected value (µ) = ∑ y P(y) Sample mean (X) = ∑X i / n Sample standard deviation = √[∑(X i - X) 2 / (n-1)] iid: independent and identically distributed.
1.Addition Rule 2.Multiplication Rule 3.Compliments 4.Conditional Probability 5.Permutation 6.Combinations 7.Expected value 8.Geometric Probabilities 9.Binomial.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Project B example, again 2.Booth vs. Ivey 3.Bayes Rule examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(X+Y) = E(X) + E(Y) examples. 2.CLT examples. 3.Lucky poker. 4.Farha.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratios revisited. 2.Gold/Hellmuth. 3.Deal making. 4.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw1! Get hw2. 2.Combos, permutations, and A  vs 2  after.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Tournaments 2.Review list 3.Random walk and other examples 4.Evaluations.
1)Hand in HW. 2)No class Tuesday (Veteran’s Day) 3)Midterm Thursday (1 page, double-sided, of notes allowed) 4)Review List 5)Review of Discrete variables.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Uniform, normal, and exponential. 2.Exponential example. 3.Uniform.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW4 notes. 2.Law of Large Numbers (LLN). 3.Central Limit Theorem.
Central Limit Theorem Let X 1, X 2, …, X n be n independent, identically distributed random variables with mean  and standard deviation . For large n:
(Day 14 was review. Day 15 was the midterm.) Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Return and review.
Outline: 1) Odds ratios, continued. 2) Expected value revisited, Harrington’s strategy 3) Pot odds 4) Examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Combos, permutations, and A  vs 2  after first ace 2.Conditional.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value. 2.Heads up with AA. 3.Heads up with Gus vs.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review List 2.Review of Discrete variables 3.Nguyen / Szenkuti.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratio example again. 2.Random variables. 3.cdf, pmf, and density,
Texas Holdem A Poker Variant vs. Flop TurnRiver. How to Play Everyone is dealt 2 cards face down (Hole Cards) 5 Community Cards Best 5-Card Hand Wins.
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Presentation transcript:

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Review list 2.Bayes’ Rule example 3.CLT example 4.Other examples * Final is Thursday, 12/11/07, 3-6am, in Geology * Open note. * Bring a calculator and a pen or pencil. * about multiple choice open-answers + an extra-credit with 2 open-answer parts.   u 

1. Review List 1)Basic principles of counting 2)Permutations & combinations 3)Addition rule 4)Conditional probability 5)Multiplication rule 6)Independence 7)Odds ratios 8)Random variables (RVs) 9)Discrete RVs, and probability mass function (pmf) 10)Expected value 11)Pot odds calculations 12)Deal-making 13)Variance and SD 14)Bernoulli RV [0-1. µ = p,  = √(pq). ] 15)Binomial RV[# of successes, out of n tries. µ = np,  = √(npq).] 16)Geometric RV[# of tries til 1st success. µ = 1/p,  = (√q) / p. ] 17)Negative binomial RV [# of tries til rth success. µ = r/p,  = (√rq) / p. ] 18)E(X+Y), V(X+Y)

1. Review List, continued 19)Continuous RVs 20)Probability density function (pdf) 21)Uniform RV 22)Normal RV 23)Law of Large Numbers (LLN) 24)Central Limit Theorem (CLT) 25)Bayes’ Rule

2. Bayes’ Rule Example If B 1, …, B n are disjoint events with P(B 1 or … or B n ) = 1, then P(B i | A) = P(A | B i ) * P(B i ) ÷ [ ∑P(A | B j )P(B j )]. Q. Suppose your opponent looks at her cards and then looks at her chips immediately. You know that she’d do that with 100% probability if she had AA or KK, and with 50% probability if she had AK. Given only this information, what is the probability that she has AA? A.We want P(AA | looked at chips). But we know P(looked at chips | AA) = 100%. P(AA | looked at chips) = P(looked at chips | AA) P(AA) ÷ [P(looked at chips | AA)P(AA) +P(looked at chips | KK)P(KK) +P(looked at chips|AK)P(AK)] = 100% x P(AA) ÷ [100% x P(AA) + 100% x P(KK) + 50% x P(AK)] = 100% x 6/1326 ÷ [100% x 6/ % x 6/ % x 16/1326] = 6/1326 ÷ [20/1326] = 30.0%.

3. CLT Example Central Limit Theorem (CLT): if X 1, X 2 …, X n are iid with mean µ& SD  then (X - µ) ÷ (  /√n) ---> Standard Normal. (mean 0, SD 1). In other words, X is like a draw from a normal distribution with mean µ and standard deviation of  ÷√n. That is, 95% of the time, X is in the interval µ +/ (  /√n). Q.Suppose you average $5 profit per hour, with a SD of $60 per hour. If you play 1600 hours, let Y be your average profit over those 1600 hours. What is range where Y is 95% likely to fall? A.We want µ +/ (  /√n), where µ = $5,  = $60, and n=1600. So the answer is $5 +/ x $60 / √(1600) = $5 +/- $2.94, or the range [$2.06, $7.94].

4. Rainbow flops. P(Rainbow flop) = choose(4,3) * 13 * 13 * 13 ÷ choose(52,3) choices for the 3 suits numbers on the 3 cards possible flops ~ 39.76%. Alternative way: conceptually, order the flop cards. No matter what flop card #1 is, P(suit of #2 ≠ suit of #1 & suit of #3 ≠ suits of #1 and #2) = P(suit #2 ≠ suit #1) * P(suit #3 ≠ suits #1 and #2 | suit #2 ≠ suit #1) = 39/51 * 26/50 ~ 39.76%. Q: Out of 100 hands, expected number of rainbow flops? +/- what? X = Binomial (n,p), with n = 100, p = 39.76%, q = 60.24%. E(X) = np = 100 * = SD(X) = √( npq) = sqrt(23.95) = So, expected around / rainbow flops, out of 100 hands.

More poker examples. Suppose you’re all-in next hand, no matter what. (i)What is the probability that you will eventually make 4 of a kind? (In other words, what is the probability that, after all 5 board cards are dealt, you will have 4 of a kind? Note that this includes the possibility that there is 4 of a kind on the board.) Answer: Forget about which 2 cards are yours! 13 * choose(48,3) / choose(52,7) =.00168, or about 1 in 595.

4. Poker Examples, continued (ii)Given that both of your hole cards are the same suit, what is the probability that you will eventually make a flush? (Note that technically this includes the possibility that the 5 board cards are all the same suit, even if this is not the same suit as your two cards!) P(exactly 3 of your suit or exactly 4 of your suit or 5 of your suit or 5 of other suit) = [choose(11,3)*choose(39,2) + choose(11,4)*39 + choose(11,5) + 3*choose(13,5)] choose(50,5) ~ 6.58% (iii) (The worst possible beat.) You have pocket aces, and your opponent has 6  2 . The first two cards of the flop are revealed, and they are both aces! At this point, what is your opponent’s probability of winning the hand? 6 cards out. 46 cards left in the deck. The last 3 board cards must come: 3  4  5 , not nec. in that order. P(opponent wins) = 1 / choose(46,3) = , or 1 in 15,180.

4. Poker Examples, continued The definition of a jackpot hand is a hand that meets the following 2 conditions: (a) You have a full house with 3 aces, or better. That is, you have a royal flush, straight flush, 4 of a kind, or a full house with 3 aces. (b) Your best 5-card hand must use both of your hole cards. [Ignore the possibility of ambiguity as to whether your hole card plays, such as where you have A5 and the board is AA553.] (iv) Given that you make a hand satisfying Condition (a), what is the probability that you satisfy Condition (b)? Imagine ordering the 7 cards so that the first 5 are the ones actually used. What’s the chance that your 2 cards are in those first 5? = P(your first card is in those 5 AND your 2nd card is in those 5) = 5/7 * 4/6 = 47.6% Many 2-card hands that seem weak nevertheless have some chance of being two- player jackpot hands. If you have 94, it is possible for you and your opponent to both make jackpot hands, if for instance the board comes something like 44477, and your opponent has 77. (v)Are there any 2-card hands you could have such that, no matter what your opponent has and no matter what the board is, you and your opponent cannot possibly both have jackpot hands? List them. Only 32 offsuit. To satisfy (b), the board must be or 33322….