QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,

Slides:



Advertisements
Similar presentations
Int. Conf. II-VI 2007 Coherent Raman spectroscopy of Cd 1-x Mn x Te quantum wells Lowenna Smith, Daniel Wolverson, Stephen Bingham and J. John Davies Department.
Advertisements

Quantum Theory of Collective Atomic Recoil in Ring Cavities
Dynamics of Spin-1 Bose-Einstein Condensates
High-resolution spectroscopy with a femtosecond laser frequency comb Vladislav Gerginov 1, Scott Diddams 2, Albrecht Bartels 2, Carol E. Tanner 1 and Leo.
Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Emergent Majorana Fermion in Cavity QED Lattice
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
In Search of the “Absolute” Optical Phase
Quantum Coherent Control with Non-classical Light Department of Physics of Complex Systems The Weizmann Institute of Science Rehovot, Israel Yaron Bromberg,
Self-Guided Operation of Green-Pumped Singly Resonant
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Anderson localization in BECs
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Single-ion Quantum Lock-in Amplifier
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Pump-Probe Spectroscopy Chelsey Dorow Physics 211a.
Ideas for Experimental Realization of Neutral Atom Quantum Computing 演 講 者:蔡 錦 俊 成功大學物理系
Coherence and decay within Bose-Einstein condensates – beyond Bogoliubov N. Katz 1, E. Rowen 1, R. Pugatch 1, N. Bar-gill 1 and N. Davidson 1, I. Mazets.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
Light and Matter Tim Freegarde School of Physics & Astronomy University of Southampton Controlling matter with light.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
QUEST - Centre for Quantum Engineering and Space-Time Research Single mode squeezing for Interferometry beyond shot noise Bernd Lücke J. Peise, M. Scherer,
The Fit and the Pendulum Quantum Mechanics and New Clocks M. Crescimanno Department of Physics and Astronomy Youngstown State University & R. Walsworth,
Precise Measurement of Vibrational Transition Frequency of Optically Trapped molecules NICT Masatoshi Kajita TMU G. Gopakumar, M. Abe, M. Hada We propose.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Degenerate Quantum Gases manipulation on AtomChips Francesco Saverio Cataliotti.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Bose-Einstein condensates in random potentials Les Houches, February 2005 LENS European Laboratory for Nonlinear Spectroscopy Università di Firenze J.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Light-induced instabilities in large magneto-optical traps G. Labeyrie, F. Michaud, G.L. Gattobigio, R. Kaiser Institut Non Linéaire de Nice, Sophia Antipolis,
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Excited state spatial distributions in a cold strontium gas Graham Lochead.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Optically detected magnetic resonance of silicon vacancies in SiC Kyle Miller, John Colton, Samuel Carter (Naval Research Lab) Brigham Young University.
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Non-Abelian Josephson effect and fractionalized vortices Wu-Ming Liu (刘伍明) ( Institute of Physics, CAS )
Moti Fridman 1, Alessandro Farsi 2 and Alexander L. Gaeta 2 1 School of Engineering, Bar Ilan University, Ramat Gan, 52900, Israel 2 School of Applied.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
QUEST - Centre for Quantum Engineering and Space-Time Research Spin dynamics and the Quantum Zeno Effect Carst en Klem pt Leibn iz Univ ersitä t Hann over.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Single reservoir heat engine: controlling the spin
Photon counter with Rydberg atoms
5-level Rabi-flopping Rabi-flopping of a 5-level Zeeman split atom:
Quantum phase magnification
Presentation transcript:

QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer, O. Topic, W. Ertmer, C. Klempt Institute of Quantum Optics, Leibniz Universität Hannover G. Gebreyesus, F. Deuretzbacher, L. Santos Institute of Theoretical Physics, Leibniz Universität Hannover J. Arlt QUANTOP, Institut for Fysik og Astronomi, Aarhus Universitet, Denmark

QUEST - Centre for Quantum Engineering and Space-Time Research LightAtoms OpticsAtom optics Coherent opticsAtom optics with Bose-Einstein condensates Non-classical optics Non-classical atom optics Light and atoms for interferometry 2

QUEST - Centre for Quantum Engineering and Space-Time Research Parametric amplification vs. spin dynamics Optical parametric amplification Coherent pump Non-linear crystal Signal and idler beam Spinor Bose-Einstein condensate 87 Rb BEC in m F =0 Spin dynamics Atoms in m F =±1 3

QUEST - Centre for Quantum Engineering and Space-Time Research Introduction Experimental setup Spin dynamic resonances Spin dynamics via microwave dressing Content 4

QUEST - Centre for Quantum Engineering and Space-Time Research 87 Rb atoms in a dipole trap 87 Rb F=2 m F =

QUEST - Centre for Quantum Engineering and Space-Time Research Absorption detection m F =-1 m F =0 m F =1 6

QUEST - Centre for Quantum Engineering and Space-Time Research Introduction Experimental setup Spin dynamic resonances Spin dynamics via microwave dressing Content 7

QUEST - Centre for Quantum Engineering and Space-Time Research Simplified model for spin dynamics  E 0; 1  E 0; -1 Effective potential for mF=+/-1 atoms Multiresonant spinor dynamics in a Bose-Einstein condensate, Klempt et al., Phys. Rev. Lett. 103, (2009) 8

QUEST - Centre for Quantum Engineering and Space-Time Research Spin dynamic resonances in a cylindrical trap Effective potential with cylindrical symmetry magnetic field population in m F = ±1 9

QUEST - Centre for Quantum Engineering and Space-Time Research magnetic field population in m F = ±1 Spatial modes populated by spin dynamics magnetic field Spontaneous Breaking of Spatial and Spin Symmetry in Spinor Condensates Scherer, et.al, Phys. Rev. Lett.,105, (2010) 10

QUEST - Centre for Quantum Engineering and Space-Time Research Introduction Experimental setup Spin dynamic resonances Spin dynamics via microwave dressing Content 11

QUEST - Centre for Quantum Engineering and Space-Time Research Instability rates Instability rate Maximal for Instability rate Im[E] In F=1: 12

QUEST - Centre for Quantum Engineering and Space-Time Research Spin dynamics in F=1 F=2 U 1 >0 F=1 U 1 <0 Zeeman splitting in F=1  E 0; 1  E 0; Frequency Magnetic field

QUEST - Centre for Quantum Engineering and Space-Time Research Dressed states Bare states Reminder Ω resonant Rabi frequency ω laser frequency ω0 atomic frequency Hamiltonian Dressed states AC Stark shift 14

QUEST - Centre for Quantum Engineering and Space-Time Research Microwave dressing Resonance frequency Hz F=1 F=2 m F =-2m F =-1m F =0m F =1m F =2 Fixed magnetic field No spin dynamics 15

QUEST - Centre for Quantum Engineering and Space-Time Research Spin dynamics via microwave dressing 16

QUEST - Centre for Quantum Engineering and Space-Time Research Thank you for your attention. 17