Intruders & Intrusion Detection Systems 1. 22 Intruders Three classes of intruders:Three classes of intruders: An individual who is not authorized to.

Slides:



Advertisements
Similar presentations
Computer Security: Principles and Practice First Edition by William Stallings and Lawrie Brown Lecture slides by Lawrie Brown Chapter 6 – Intrusion Detection.
Advertisements

Lecture 13 Intrusion Detection modified from slides of Lawrie Brown.
Cryptography and Network Security Chapter 20 Intruders
Web Defacement Anh Nguyen May 6 th, Organization Introduction How Hackers Deface Web Pages Solutions to Web Defacement Conclusions 2.
Chapter 10: Data Centre and Network Security Proxies and Gateways * Firewalls * Virtual Private Network (VPN) * Security issues * * * * Objectives:
INDEX  Ethical Hacking Terminology.  What is Ethical hacking?  Who are Ethical hacker?  How many types of hackers?  White Hats (Ethical hackers)
Lecture slides for “Computer Security: Principles and Practice”, 2/e, by William Stallings and Lawrie Brown, Chapter 8 “Intrusion Detection”.
Cyber Threat Analysis  Intrusions are actions that attempt to bypass security mechanisms of computer systems  Intrusions are caused by:  Attackers accessing.
Firewalls and Intrusion Detection Systems
Software Security Threats Threats have been an issue since computers began to be used widely by the general public.
Chapter 8 Deworming.
Intrusion Detection Systems and Practices
1 Intrusion Detection CSSE 490 Computer Security Mark Ardis, Rose-Hulman Institute May 4, 2004.
Lesson 13-Intrusion Detection. Overview Define the types of Intrusion Detection Systems (IDS). Set up an IDS. Manage an IDS. Understand intrusion prevention.
Intrusion detection Anomaly detection models: compare a user’s normal behavior statistically to parameters of the current session, in order to find significant.
Lecture 11 Reliability and Security in IT infrastructure.
seminar on Intrusion detection system
Lecture 11 Intrusion Detection (cont)
Department Of Computer Engineering
Intrusion Detection. Intruders Classes (from [ANDE80]: Classes (from [ANDE80]: two most publicized threats to security are malware and intruders two most.
INTRUSION DETECTION SYSTEMS Tristan Walters Rayce West.
1 Intrusion Detection Systems. 2 Intrusion Detection Intrusion is any use or attempted use of a system that exceeds authentication limits Intrusions are.
Information Systems CS-507 Lecture 40. Availability of tools and techniques on the Internet or as commercially available software that an intruder can.
CSc 8222 Network Security Intruders WenZhan Song Cryptography and Network Security1.
ISEC0511 Programming for Information System Security
Intrusion Detection Presentation : 1 OF n by Manish Mehta 01/24/03.
AIS, Passwords Should not be shared Should be changed by user Should be changed frequently and upon compromise (suspected unauthorized disclosure)
Malicious Code Brian E. Brzezicki. Malicious Code (from Chapter 13 and 11)
1 Computer Science 653 Lecture Inference Control Professor Wayne Patterson Howard University Fall 2009.
Chapter 18 Intruders.
Lecture 10 Intrusion Detection modified from slides of Lawrie Brown.
Honeypot and Intrusion Detection System
Intrusion Detection Prepared by: Mohammed Hussein Supervised by: Dr. Lo’ai Tawalbeh NYIT- winter 2007.
Intrusion Control. CSCE Farkas2 Readings Lecture Notes Pfleeger: Chapter 7.5.
NS-H /11041 Intruder. NS-H /11042 Intruders Three classes of intruders (hackers or crackers): –Masquerader –Misfeasor –Clandestine user.
INTRUDERS BY VISHAKHA RAUT TE COMP OUTLINE INTRODUCTION TYPES OF INTRUDERS INTRUDER BEHAVIOR PATTERNS INTRUSION TECHNIQUES QUESTIONS ON INTRUDERS.
HIPS Host-Based Intrusion Prevention System By Ali Adlavaran & Mahdi Mohamad Pour (M.A. Team) Life’s Live in Code Life.
Name:Neha Madgaonkar Roll no:  What are intruders?  Types  Behavior  Techniques.
Intrusion Detection (ID) Intrusion detection is the ART of detecting inappropriate, incorrect, or anomalous activity There are two methods of doing ID.
Securing the Network Infrastructure. Firewalls Typically used to filter packets Designed to prevent malicious packets from entering the network or its.
Intrusion Detection System (IDS). What Is Intrusion Detection Intrusion Detection is the process of identifying and responding to malicious activity targeted.
Intrusion Detection Reuven, Dan A. Wei, Li Patel, Rinku H.
1 Chapter 9 Intruders. 2 Outline Intruders –Intrusion Techniques –Password Protection –Password Selection Strategies –Intrusion Detection Statistical.
Chapter 8 Authorization Access control matrix Multilevel Security Multilateral security Covert channel Inference control CAPTCHA Firewalls IDS.
Cryptography and Network Security Sixth Edition by William Stallings.
Chapter 9 Intruders.
Intrusion Detection Systems Paper written detailing importance of audit data in detecting misuse + user behavior 1984-SRI int’l develop method of.
Computer Security By Duncan Hall.
I NTRUSION P REVENTION S YSTEM (IPS). O UTLINE Introduction Objectives IPS’s Detection methods Classifications IPS vs. IDS IPS vs. Firewall.
Role Of Network IDS in Network Perimeter Defense.
Approaches to Intrusion Detection statistical anomaly detection – threshold – profile based rule-based detection – anomaly – penetration identification.
Computer Security Intrusion Detection. Intruders  A significant security problem for networked systems is hostile/unwanted, trespass by users or software.
Chapter Seven: Authorization 2013Term 2 INTRODUCTION Additional forms of Access Control CAPTCHAs, which are designed to restrict access to humans Firewalls,
Chapter 14.  Upon completion of this chapter, you should be able to:  Identify different types of Intrusion Detection Systems and Prevention Systems.
Common System Exploits Tom Chothia Computer Security, Lecture 17.
Chapter 9 Intruders.
IDS/IPS Intrusion Detection System/ Intrusion Prevention System.
Network Security Essentials
Intrusion Control.
Secure Software Confidentiality Integrity Data Security Authentication
NET 412 Network Security protocols
NET 412 Network Security protocols
Chapter 9 Intruders.
Intrusion Detection Systems
Lecture 8: Intrusion Detection
Intrusion Detection system
Cryptography and Network Security Chapter 20 Intruders
Intrusion.
Lecture 7: Intrusion Detection
Presentation transcript:

Intruders & Intrusion Detection Systems 1

22 Intruders Three classes of intruders:Three classes of intruders: An individual who is not authorized to use the computer and who penetrates a system’s access controls to exploit a legitimate user’s account Masquerader A legitimate user who accesses data, programs, or resources for which such access is not authorized, or who is authorized for such access but misuses his or her privileges Misfeasor An individual who seizes supervisory control of the system and uses this control to evade auditing and access controls or to suppress audit collection Clandestine user

33 Examples of Intrusion Performing a remote root compromise of an serverPerforming a remote root compromise of an server Defacing a Web serverDefacing a Web server Guessing and cracking passwordsGuessing and cracking passwords Copying a database containing credit card numbersCopying a database containing credit card numbers Viewing sensitive data, including payroll records and medical information, without authorizationViewing sensitive data, including payroll records and medical information, without authorization Running a packet sniffer on a workstation to capture usernames and passwordsRunning a packet sniffer on a workstation to capture usernames and passwords Using a permission error on an anonymous FTP server to distribute pirated software and music filesUsing a permission error on an anonymous FTP server to distribute pirated software and music files Dialing into an unsecured modem and gaining internal network accessDialing into an unsecured modem and gaining internal network access Posing as an executive, calling the help desk, resetting the executive’s password, and learning the new passwordPosing as an executive, calling the help desk, resetting the executive’s password, and learning the new password Using an unattended, logged-in workstation without permissionUsing an unattended, logged-in workstation without permission

44 Hackers Traditionally, those who hack into computers do so for the thrill of it or for statusTraditionally, those who hack into computers do so for the thrill of it or for status Intrusion detection systems (IDSs) and intrusion prevention systems (IPSs) are designed to counter hacker threatsIntrusion detection systems (IDSs) and intrusion prevention systems (IPSs) are designed to counter hacker threats In addition to using such systems, organizations can consider restricting remote logons to specific IP addresses and/or use virtual private network technologyIn addition to using such systems, organizations can consider restricting remote logons to specific IP addresses and/or use virtual private network technology CERTsCERTs Computer emergency response teamsComputer emergency response teams These cooperative ventures collect information about system vulnerabilities and disseminate it to systems managersThese cooperative ventures collect information about system vulnerabilities and disseminate it to systems managers Hackers also routinely read CERT reportsHackers also routinely read CERT reports It is important for system administrators to quickly insert all software patches to discovered vulnerabilitiesIt is important for system administrators to quickly insert all software patches to discovered vulnerabilities

55 Criminal hackers Organized groups of hackersOrganized groups of hackers Usually have specific targets, or at least classes of targets in mindUsually have specific targets, or at least classes of targets in mind Once a site is penetrated, the attacker acts quickly, scooping up as much valuable information as possible and exitingOnce a site is penetrated, the attacker acts quickly, scooping up as much valuable information as possible and exiting IDSs and IPSs can be used for these types of attackers, but may be less effective because of the quick in-and- out nature of the attackIDSs and IPSs can be used for these types of attackers, but may be less effective because of the quick in-and- out nature of the attack

66 Insider Attacks Among the most difficult to detect and preventAmong the most difficult to detect and prevent Can be motivated by revenge or simply a feeling of entitlementCan be motivated by revenge or simply a feeling of entitlement Countermeasures:Countermeasures: Enforce least privilege, only allowing access to the resources employees need to do their jobSet logs to see what users access and what commands they are enteringProtect sensitive resources with strong authenticationUpon termination, delete employee’s computer and network access Upon termination, make a mirror image of employee’s hard drive before reissuing it (used as evidence if your company information turns up at a competitor)

77 Intrusion Techniques Objective of the intruder is to gain access to a system or to increase the range of privileges accessible on a systemObjective of the intruder is to gain access to a system or to increase the range of privileges accessible on a system Most initial attacks use system or software vulnerabilities that allow a user to execute code that opens a backdoor into the systemMost initial attacks use system or software vulnerabilities that allow a user to execute code that opens a backdoor into the system

Intrusion Prevention  Want to keep bad guys out  Intrusion prevention is a traditional focus of computer security o Authentication is to prevent intrusions o Firewalls a form of intrusion prevention o Virus defenses aimed at intrusion prevention o Like locking the door on your car 8

Intrusion Detection  In spite of intrusion prevention, bad guys will sometime get in  Intrusion detection systems (IDS) o Detect attacks in progress (or soon after) o Look for unusual or suspicious activity  IDS evolved from log file analysis  IDS is currently a hot research topic  How to respond when intrusion detected? o We don’t deal with this topic here… 9

10 Intrusion Detection A system’s second line of defenseA system’s second line of defense Is based on the assumption that the behavior of the intruder differs from that of a legitimate user in ways that can be quantifiedIs based on the assumption that the behavior of the intruder differs from that of a legitimate user in ways that can be quantified Considerations:Considerations: If an intrusion is detected quickly enough, the intruder can be identified and ejected from the system before any damage is done or any data are compromisedIf an intrusion is detected quickly enough, the intruder can be identified and ejected from the system before any damage is done or any data are compromised An effective intrusion detection system can serve as a deterrent, so acting to prevent intrusionsAn effective intrusion detection system can serve as a deterrent, so acting to prevent intrusions Intrusion detection enables the collection of information about intrusion techniques that can be used to strengthen the intrusion prevention facilityIntrusion detection enables the collection of information about intrusion techniques that can be used to strengthen the intrusion prevention facility

Intrusion Detection Systems  Who is likely intruder? o May be outsider who got thru firewall o May be evil insider  What do intruders do? o Launch well-known attacks o Launch variations on well-known attacks o Launch new/little-known attacks o “Borrow” system resources o Use compromised system to attack others o etc. 12

IDS  Intrusion detection approaches o Signature-based IDS o Anomaly-based IDS  Intrusion detection architectures o Host-based IDS o Network-based IDS  Any IDS can be classified as above o In spite of marketing claims to the contrary! 13

Host-Based IDS  Monitor activities on hosts for o Known attacks o Suspicious behavior  Designed to detect attacks such as o Buffer overflow o Escalation of privilege, …  Little or no view of network activities 14

Network-Based IDS  Monitor activity on the network for… o Known attacks o Suspicious network activity  Designed to detect attacks such as o Denial of service o Network probes o Malformed packets, etc.  Some overlap with firewall  Little or no view of host-base attacks  Can have both host and network IDS 15

Signature Detection Example  Failed login attempts may indicate password cracking attack  IDS could use the rule “ N failed login attempts in M seconds” as signature  If N or more failed login attempts in M seconds, IDS warns of attack  Note that such a warning is specific o Admin knows what attack is suspected o Easy to verify attack (or false alarm) 16

Signature Detection  Suppose IDS warns whenever N or more failed logins in M seconds o Set N and M so false alarms not common o Can do this based on “normal” behavior  But, if Trudy knows the signature, she can try N  1 logins every M seconds…  Then signature detection slows down Trudy, but might not stop her 17

Signature Detection  Many techniques used to make signature detection more robust  Goal is to detect “almost” signatures  For example, if “about” N login attempts in “about” M seconds o Warn of possible password cracking attempt o What are reasonable values for “about”? o Can use statistical analysis, heuristics, etc. o Must not increase false alarm rate too much 18

Signature Detection  Advantages of signature detection o Simple o Detect known attacks o Know which attack at time of detection o Efficient (if reasonable number of signatures)  Disadvantages of signature detection o Signature files must be kept up to date o Number of signatures may become large o Can only detect known attacks o Variation on known attack may not be detected 19

Anomaly Detection  Anomaly detection systems look for unusual or abnormal behavior  There are (at least) two challenges o What is normal for this system? o How “far” from normal is abnormal?  No avoiding statistics here! o mean defines normal o variance gives distance from normal to abnormal 20

How to Measure Normal?  How to measure normal? o Must measure during “representative” behavior o Must not measure during an attack… o …or else attack will seem normal! o Normal is statistical mean o Must also compute variance to have any reasonable idea of abnormal 21

How to Measure Abnormal?  Abnormal is relative to some “normal” o Abnormal indicates possible attack  Statistical discrimination techniques include o Bayesian statistics o Linear discriminant analysis (LDA) o Quadratic discriminant analysis (QDA) o Neural nets, hidden Markov models (HMMs), etc.  Fancy modeling techniques also used o Artificial intelligence o Artificial immune system principles o Many, many, many others 22

Anomaly Detection (1)  Suppose we monitor use of three commands: open, read, close  Under normal use we observe Alice: open, read, close, open, open, read, close, …  Of the six possible ordered pairs, we see four pairs are normal for Alice, (open,read), (read,close), (close,open), (open,open)  Can we use this to identify unusual activity? 23

Anomaly Detection (1)  We monitor use of the three commands open, read, close  If the ratio of abnormal to normal pairs is “too high”, warn of possible attack  Could improve this approach by o Also use expected frequency of each pair o Use more than two consecutive commands o Include more commands/behavior in the model o More sophisticated statistical discrimination 24

Anomaly Detection (2)  Over time, Alice has accessed file F n at rate H n H0H0 H1H1 H2H2 H3H  Is this normal use for Alice?  We compute S = (H 0  A 0 ) 2 +(H 1  A 1 ) 2 +…+(H 3  A 3 ) 2 =.02 o We consider S < 0.1 to be normal, so this is normal  How to account for use that varies over time?  Recently, “Alice” has accessed F n at rate A n A0A0 A1A1 A2A2 A3A

Anomaly Detection (2)  To allow “normal” to adapt to new use, we update averages: H n = 0.2A n + 0.8H n  In this example, H n are updated… H 2 =.2 .3+.8 .4=.38 and H 3 =.2 .2+.8 .1=.12  And we now have H0H0 H1H1 H2H2 H3H

Anomaly Detection (2)  The updated long term average is H0H0 H1H1 H2H2 H3H  Is this normal use?  Compute S = (H 0  A 0 ) 2 +…+(H 3  A 3 ) 2 =.0488 o Since S =.0488 < 0.1 we consider this normal  And we again update the long term averages: H n = 0.2A n + 0.8H n  Suppose new observed rates… A0A0 A1A1 A2A2 A3A

Anomaly Detection (2)  The starting averages were: H0H0 H1H1 H2H2 H3H  Statistics slowly evolve to match behavior  This reduces false alarms for SA  But also opens an avenue for attack… o Suppose Trudy always wants to access F 3 o Can she convince IDS this is normal for Alice?  After 2 iterations, averages are: H0H0 H1H1 H2H2 H3H

Anomaly Detection (2)  To make this approach more robust, must incorporate the variance  Can also combine N stats S i as, say, T = (S 1 + S 2 + S 3 + … + S N ) / N to obtain a more complete view of “normal”  Similar (but more sophisticated) approach is used in an IDS known as NIDES  NIDES combines anomaly & signature IDS 29

Anomaly Detection Issues  Systems constantly evolve and so must IDS o Static system would place huge burden on admin o But evolving IDS makes it possible for attacker to (slowly) convince IDS that an attack is normal o Attacker may win simply by “going slow”  What does “abnormal” really mean? o Indicates there may be an attack o Might not be any specific info about “attack” o How to respond to such vague information? o In contrast, signature detection is very specific 30

Anomaly Detection  Advantages? o Chance of detecting unknown attacks  Disadvantages? o Cannot use anomaly detection alone… o …must be used with signature detection o Reliability is unclear o Anomaly detection indicates “something unusual”, but lacks specific info on possible attack 31

Anomaly Detection: The Bottom Line  Anomaly-based IDS is active research topic  Many security experts have high hopes for its ultimate success  Often cited as key future security technology  Hackers are not convinced! o Title of a talk at Defcon: “Why Anomaly-based IDS is an Attacker’s Best Friend”  Anomaly detection is difficult and tricky  As hard as AI? 32

Honeypots Decoy systems that are designed to lure a potential attacker away from critical systemsDecoy systems that are designed to lure a potential attacker away from critical systems Because any attack against the honeypot is made to seem successful, administrators have time to mobilize and log and track the attacker without ever exposing productive systemsBecause any attack against the honeypot is made to seem successful, administrators have time to mobilize and log and track the attacker without ever exposing productive systems Recent research has focused on building entire honeypot networks that emulate an enterprise, possible with actual or simulated traffic and dataRecent research has focused on building entire honeypot networks that emulate an enterprise, possible with actual or simulated traffic and data These systems are filled with fabricated information designed to appear valuable but that a legitimate user of the system wouldn’t access Thus, any attempt to communicate with the system is most likely a probe, scan, or attack Has no production value Divert an attacker from accessing critical systems Collect information about the attacker’s activity Encourage the attacker to stay on the system long enough for administrators to respond Designed to: 33