Front-end Electronics for Silicon Trackers readout Deep Sub-Micron Technology The case of Silicon strips at the ILC Jean-Francois Genat and S. Fougeron,

Slides:



Advertisements
Similar presentations
Electronics for large LAr TPC’s F. Pietropaolo (ICARUS Collaboration) CRYODET Workshop LNGS, March 2006.
Advertisements

SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
The NO A APD Readout Chip Tom Zimmerman Fermilab May 19, 2006.
Front-end electronics for Time Projection Chamber I.Konorov Outlook:  TPC requirements  TPC readout options  Options for TPC FE chips  Prototype TPC.
Jaap Velthuis, University of Bristol SPiDeR SPiDeR (Silicon Pixel Detector Research) at EUDET Telescope Sensor overview with lab results –TPAC –FORTIS.
7 June 2006 SLAC DOE Review M. Breidenbach 1 KPiX & EMCal SLAC –D. Freytag –G. Haller –R. Herbst –T. Nelson –mb Oregon –J. Brau –R. Frey –D. Strom BNL.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
SiLC Front-End Electronics LPNHE Paris March 15 th 2004.
28 June 2002Santa Cruz LC Retreat M. Breidenbach1 SD – Silicon Detector EM Calorimetry.
August SGSS front end, Summary August 2008 Edwin Spencer, SCIPP1 SGST Preview SCIPP, UC Santa Cruz Andrey Martchovsky Gregory Horn Edwin Spencer.
Fast sampling for Picosecond timing Jean-François Genat EFI Chicago, Dec th 2007.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch 1, Herve Grabas 3, Mary.
Oct, 2000CMS Tracker Electronics1 APV25s1 STATUS Testing started beginning September 1 wafer cut, others left for probing 10 chips mounted on test boards.
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Progress on STS CSA chip development E. Atkin Department of Electronics, MEPhI A.Voronin SINP, MSU.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
Development of the Readout ASIC for Muon Chambers E. Atkin, I. Bulbalkov, A. Voronin, V. Ivanov, P. Ivanov, E. Malankin, D. Normanov, V. Samsonov, V. Shumikhin,
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
1 Luciano Musa, Gerd Trampitsch A General Purpose Charge Readout Chip for TPC Applications Munich, 19 October 2006 Luciano Musa Gerd Trampitsch.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
EUDET ANNUAL MEETING OCT 6th-8th 2008, NIKHEF A 130nm CMOS Digitizer Chip for Silicon Strips readout at the ILC on behalf of W. Da Silva 1, J. David 1,
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
and the EUDET I3-FP6 European Project
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
LHCb Vertex Detector and Beetle Chip
Fermilab Silicon Strip Readout Chip for BTEV
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
Front-End electronics for Future Linear Collider W-Si calorimeter physics prototype B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
Aurore Savoy-Navarro 1), Albert Comerma 2), E. Deumens 3), Thanh Hung Pham 1), Rachid Sefri 1) 1) LPNHE-Université Pierre et Marie Curie/IN2P3-CNRS, Fr.
CBM 12 th Meeting, October 14-18, 2008, Dubna Present status of the first version of NIHAM TRD-FEE analogic CHIP Vasile Catanescu and Mihai Petrovici NIHAM.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
Medipix3 chip, downscaled feature sizes, noise and timing resolution of the front-end Rafael Ballabriga 17 June 2010.
Oscar Alonso – Future Linear Colliders Spanish Network 2015 – XII Meeting - Barcelona, January 2015 O. Alonso, J. Canals, M. López, A. Vilà, A. Herms.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
Analog Front End For outer Layers of SVT (L.4 & L.5) Team:Luca BombelliPost Doc. Bayan NasriPh.D. Student Paolo TrigilioMaster student Carlo FioriniProfessor.
Deep submicron readout chip development on behalf of D. Fougeron, 1 R. Hermel 1, H. Lebbolo 2, R. Sefri, 2 1 LAPP Annecy, 2 LPNHE Paris SiD phone meeting.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Silicon Tracker Data Acquisition and Electronics for the Linear Collider Jean-Francois Genat LPNHE Universite Pierre et Marie Curie CNRS/IN2P3 On behalf.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC on behalf of J. David 2, M. Dhellot 2, D. Fougeron, 1 R. Hermel 1, J-F. Huppert.
M. Manghisoni, L. Ratti Università degli Studi di Pavia INFN Pavia
Valerio Re Università di Bergamo and INFN, Pavia, Italy
Pixel front-end development
A General Purpose Charge Readout Chip for TPC Applications
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
INFN Pavia and University of Bergamo
R&D activity dedicated to the VFE of the Si-W Ecal
DCH FEE 28 chs DCH prototype FEE &
Jean-Francois Genat LPNHE Universite Pierre et Marie Curie CNRS/IN2P3
Status of n-XYTER read-out chain at GSI
SiD Electronic Concepts
SVT detector electronics
BESIII EMC electronics
SKIROC status Calice meeting – Kobe – 10/05/2007.
OmegaPix 3D IC prototype for the ATLAS upgrade SLHC pixel project 3D Meeting 19th March, 2010 A. Lounis, C. de La Taille, N. Seguin-Moreau, G.
Signal processing for High Granularity Calorimeter
The CMS Tracking Readout and Front End Driver Testing
Presentation transcript:

Front-end Electronics for Silicon Trackers readout Deep Sub-Micron Technology The case of Silicon strips at the ILC Jean-Francois Genat and S. Fougeron, Y. Karyotakis, H. Lebbolo, T.H. Pham, A. Savoy-Navarro, R. Sefri, S. Vilalte IN2P3-CNRS Universities Paris 6-7

Outline Context of the Silicon strips for the ILC Integrated electronics 180nm CMOS chip First design in 130nm Future plans FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Silicon strips for the ILC FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Silicon strips tracker at the ILC a few 10 6 Silicon strips cm long Thickness: 200–500  m Strip pitch 50–200  m Single sided, AC coupled FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Readout parameters Interstrip capacitance > 1 pF/cm Strip to substrate capacitance > 0.1 pF/cm Occupancy defined as % channels hit per BC: Outer barrel and end caps layers: < 1 % Inner barrel and end caps layers: < a few % ILC timing: 1 ms: ~ / BC 100ms in between FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Detector data Pulse height: Cluster centroid to get position resolution to a few µ m Detector pulse sampling Time: Two scales: - Coarse ns BCO tagging Two shaping time ranges 500 ns and 2  s - Nanosecond timing for the coordinate along the strip Not to replace another layer or double sided Spatial estimation to a few cm Shaping times: ns FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Coordinate along the strip 15 ns V = 6.3e m/s = c/4.7 L =50nH R =5  C i =500 fF C s = 100 fF 120cm V = m/s= c/3.7 FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris 1 ns time resolution is 8 cm SPICE

Integrated Electronics FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Integrated Electronics SLAC Calorimetry and tracking Charge: linear 1 or 2-gains, 2500 MIPS Shaping: reset-sample (2-correlated sampling like) Time: BC id UC Santa Cruz Tracking Charge: Time Over Threshold, Lo+Hi thresholds, 128 MIPS Shaping:  s Time: BC id LPNHE Paris Tracking Charge: linear, multiple sampling including pedestal, 50 MIPS Time: 2-scales BC id ns timing (long. coordinate over strips) FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Foreseen on-detector FE chip Pulse sampling: 16 samples over 2 shaping times (inc pedestal) 16-deep sampling analog buffer Buffering: a few 10 events buffer 2D structure: (a few 10)*16 caps/channel Sparsification/calibration : On FE chip Analog-Digital conversion: Wilkinson optimum (power) Digital processing: Amplitude and time estimation + charge cluster algorithm, lossless data compression Power: 1/100 ILC duty cycle: FE Power cycling FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Foreseen Front-end architecture Storage Waveforms Technologies: Deep Sub-Micron CMOS nm Future: SiGe &/or deeper DSM Counter Wilkinson ADC ‘trigger’ Ch # Charge 1-40 MIP, S/N~ 15-20, Time resolution: BC tagging, fine: ~ 2ns Calibration Control Analog samplers, slow, fast  i V i > th Sparsifier Channel n+1 Channel n-1 Time tag Preamp + Shapers Strip reset FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Charge measurements Preamp + Shaper Gain: 20mV/MIP over 1-30 MIP S/N = e- ENC at 3  s peaking time Reset transistor Analog sampler and event buffer 2D: 16-deep sampling, a few 10-deep events Sparsifier Threshold an analog sum of 3 adjacent channels after pulse shaping. Auto-zeroed. ADC 8-10 bits Clocked at 12 MHz, time interpolated if needed FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Time measurements Time stamping BC tagging: resolution of 30 to 50 ns Time-stamp the sparsifier output at 4 * BCO clock (83 ns) Fine time measurement Order of 1 ns 32 * BCO clock (12ns on-chip vernier sampling clock) Use digital signal processing over 16 digitized samples FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Expected time resolution Simulated time resolution using multiple sampling and a least square fit of the shaper pulse algorithm (Bill Cleland) - S/N = samples - 40 ns shaping 1 ns time resolution SiGe technology FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

CMOS 180nm Chip FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

UMC CMOS 180nm technology 180 nm Mixed-mode process 6 metals layers 3.3 V transistor Cox = F/m² Metal/Metal capacitance = 1fF/mm² Gate’s minimum width= 0.5mm Various V t options FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Front-end test chip in CMOS 180nm Low noise amplification + pulse shaping Sample & hold Comparator Submitted end ‘ 04 Preamp CR RC Shaper Follower Comparator 16 identical channels FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

channel UMC 0.18 um chip (layout and picture) Silicon 3mm FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Test Card Chip on Board version (wire bonded) FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Preamp Reset FET Gain: 8mV/MIP 3.3V input transistor 2000/0.5 gm = 0.69 mA/V 40  A current (Weak inversion IC ~= 0.01) FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Preamp tests results Mainly OK - Gain OK - Linearity over : +/-1.5% +/-0.5% expected - Noise 3  s-20  s rise-fall times, 40  A biasing: e-/pF OK - Dynamic range 60 OK FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Shaper CR-RC 1-5  s FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Shaper Noise 375 e- input noise with chip-on-board wiring (against 280 simulated) 375 e- RMS FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Shaper tests results - Peaking time:  s tunable peaking time 1-10 targeted Linearity: +/- 6% +/- 1% targeted - 3 us shaping time and 140  W power: e-/pF e-/pF expected - Linearity: +/-1.5% +/-0.5% expected FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Linearities +/-1.5% +/-0.5% expected +/-6% +/-1.5% expected FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Sample & Hold Comparator Sample and hold: OK Comparator: Vt spreads of the order of 5 mV due to transistors size - Increase from 10/0.5 to 200/10 to reduce spreads - Increase Preamp + Shaper voltage gain from 8 to 20 mV/MIP FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Process spreads Preamp gains statistics Process spreads: 3.3 % FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Tests Conclusions 12 chips tested (June ’05) The UMC CMOS 180nm process is mature and reliable: - Models mainly OK - Only one transistor failure over 12 chips - Process spreads of a few % Encouraging results regarding CMOS DSM go to 130nm FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

CMOS 130nm chip design FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Front-end in CMOS 130nm 130nm CMOS: Smaller Faster More radiation tolerant Lower power Will be (is) dominant in industry Drawbacks: - Reduced voltage swing (Electric field constant) - Leaks (gate/subthreshold channel) - Models more complex, not always up to date - Crosstalk (digital) FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Technology parameters 180 nm 3.3V transistors 1.8V logic supply 6 metals layers (Al) MIM capacitors = 1fF/  m² Three Vt options 130nm 3.3V transistors 1.2V logic supply 8 metals layers (Copper) MIM capacitors =1.5fF/  m² Same Vt options Low leakage transistors option FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

4-channel test chip Waveforms UMC CMOS 130nm Counter Wilkinson ADC Can be used for a “trigger” Ch # Analog samplers, (slow)  i V i > th Sparsifier Channel n+1 Channel n-1 Time tag Preamp + Shapers Strip reset Clock 3-96 MHz FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris reset

130nm CMOS chip Amplifier, Shaper, Sparsifier 90*350  m2 FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris Analog sampler 250*100  m A/D 90*200  m Submitted April 19 th ‘06

Some issues with 130nm design Noise not properly modeled: 1/f noise out of belief… (both coefficient and exponent) Design rules more constraining Lower power supplies voltages Low Vt transistors leaky Some (via densities) not available under Cadence (Mentor) FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Front-End Digital Chip control Buffer memory Processing for - Calibrations - Amplitude and time least squares estimation, centroids - Raw data after zero suppression lossless compression Tools - Digital libraries in 130nm CMOS available - Synthesis from VHDL/Verilog - SRAM memory - PLLs FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Future plans FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Future plans Implement the fast (20-100ns shaping) version with Silicon-Germanium / CMOS including: - Preamp + Shaper (20-100ns) - Fast sampling - Power cycling Submit a full 128 channel version including slow and fast analog processing, power cycling, digital FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

The End …

Backup

Noise summary Measured using COB test card

Possible issues: Transistors leaks Two situations: - Gate-channel due to tunnel effect (can affect noise performances) - Through channel when transistor switched-off (only affects large digital designs) 130 nm 180 nm 90 nm - 180nm chip OK - 130nm, no gate leakage expected, but sub-threshold - 90nm, important gate leakage Scale: 1 nA/  m = 8000 e- noise in FE Nano-CMOS Circuit and Physical design B.P Wong, A. Mittal, Y. Cao, G. Starr, 2005, Wiley Gate leakage Sub-threshold current FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Possible issues: noise: 130nm vs 180nm (simulation) 130nm 1MHz  7.16nV/sqrt(Hz) W/L = 2mm/0.5u Ids = 38.79u,Vgs=-190mV,Vds=-600mV gm= u,gms= u 1MHz  7.16nV/sqrt(Hz) Thermal noise hand calculation = 3.68nV/sqrt(Hz) 180nm 1MHz  3.508nV/sqrt(Hz) gm=944.4uS,gms=203.1uS 1MHz  3.508nV/sqrt(Hz) Thermal noise hand calculation = 3.42nV/sqrt(Hz) PMOS: FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris

Noise: 130nm vs 180nm (simulation) 130nm 1MHz --> 24.65nV/sqrt(Hz) W/L = 50u/0.5u Ids= u,Vgs=260mV,Vds=1.2V gm= uS,gms= uS,gds=6.3575uS 1MHz --> 24.65nV/sqrt(Hz) 100MHz --> 5nV/sqrt(Hz) Thermal noise hand calculation = 3.78nV/sqrt(Hz) 180nm 1MHz --> 4nV/sqrt(Hz) W/L=50u/0.5u Ids=47uA,Vgs=300mV,Vds=1.2V gm=842.8uS,gms=141.2uS,gds=16.05uS 1MHz --> 4nV/sqrt(Hz) 10MHz --> 3.49nV/sqrt(Hz) Thermal noise hand calculation = 3.62nV/sqrt(Hz) NMOS : FEE2006, May th 2006 Perugia  J-F Genat LPNHE Paris