Inferring gene regulatory networks from transcriptomic profiles Dirk Husmeier Biomathematics & Statistics Scotland
Overview Introduction Methodology Circadian regulation in Arabidopsis Application to synthetic biology DREAM
Network reconstruction from postgenomic data
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
direct interaction common regulator indirect interaction co-regulation Pairwise associations do not take the context of the systeminto consideration Shortcomings
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
Conditional independence graphs (CIGs) Direct interaction Partial correlation, i.e. correlation conditional on all other domain variables Corr(X 1,X 2 |X 3,…,X n ) strong partial correlation π 12 Inverse of the covariance matrix
CorrelationPartial correlation high high high high low
Conditional Independence Graphs (CIGs) Direct interaction Partial correlation, i.e. correlation conditional on all other domain variables Corr(X 1,X 2 |X 3,…,X n ) Problem: #observations < #variables Covariance matrix is singular strong partial correlation π 12 Inverse of the covariance matrix
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
Regulatory network
Description with differential equations Rates Concentrations Kinetic parameters q
Model Parameters q Probability theory Likelihood
1) Practical problem: numerical optimization q 2) Conceptual problem: overfitting ML estimate increases on increasing the network complexity
Overfitting problem True pathway Poorer fit to the data Equal or better fit to the data
Regularization E.g.: Bayesian information criterion (BIC) Maximum likelihood parameters Number of parameters Number of data points Data misfit term Regularization term
Complexity LikelihoodBIC
Model selection: find the best pathway Select the model with the highest posterior probability: This requires an integration over the whole parameter space:
MCMC based schemes q Problem: excessive computational costs
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
Friedman et al. (2000), J. Comp. Biol. 7, Marriage between graph theory and probability theory
Bayes net ODE model
Model Parameters q Bayesian networks: integral analytically tractable!
UAI 1994
Example: 2 genes 16 different network structures Compute
Identify the best network structure Ideal scenario: Large data sets, low noise
Uncertainty about the best network structure Limited number of experimental replications, high noise
Sample of high-scoring networks
Feature extraction, e.g. marginal posterior probabilities of the edges
Sample of high-scoring networks Feature extraction, e.g. marginal posterior probabilities of the edges High-confident edge High-confident non-edge Uncertainty about edges
Number of structures Number of nodes Sampling with MCMC
UAI 1994
Model Parameters q Bayesian networks: integral analytically tractable!
[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise Linearity assumption A P1 P2 P4 P3 w1 w4 w2 w3
Homogeneity assumption Parameters don’t change with time
Homogeneity assumption Parameters don’t change with time
Limitations of the homogeneity assumption
Overview Introduction Methodology Circadian regulation in Arabidopsis Application to synthetic biology DREAM
Accuracy Computational complexity Methods based on correlation and mutual information Conditional independence graphs Mechanistic models Bayesian networks
Example: 4 genes, 10 time points t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Standard dynamic Bayesian network: homogeneous model
Limitations of the homogeneity assumption
Our new model: heterogeneous dynamic Bayesian network. Here: 2 components t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Our new model: heterogeneous dynamic Bayesian network. Here: 3 components
Extension of the model q
q k h Number of components (here: 3) Allocation vector
Analytically integrate out the parameters q k h Number of components (here: 3) Allocation vector
Non-homogeneous model Non-linear model
[A]= w1[P1] + w2[P2] + w3[P3] + w4[P4] + noise BGe: Linear model A P1 P2 P4 P3 w1 w4 w2 w3
Can we get an approximate nonlinear model without data discretization? y x
Idea: piecewise linear model y x
t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10 Inhomogeneous dynamic Bayesian network with common changepoints
Inhomogenous dynamic Bayesian network with node-specific changepoints t1t1 t2t2 t3t3 t4t4 t5t5 t6t6 t7t7 t8t8 t9t9 t 10 X (1) X 1,1 X 1,2 X 1,3 X 1,4 X 1,5 X 1,6 X 1,7 X 1,8 X 1,9 X 1,10 X (2) X 2,1 X 2,2 X 2,3 X 2,4 X 2,5 X 2,6 X 2,7 X 2,8 X 2,9 X 2,10 X (3) X 3,1 X 3,2 X 3,3 X 3,4 X 3,5 X 3,6 X 3,7 X 3,8 X 3,9 X 3,10 X (4) X 4,1 X 4,2 X 4,3 X 4,4 X 4,5 X 4,6 X 4,7 X 4,8 X 4,9 X 4,10
Overview Introduction Methodology Circadian regulation in Arabidopsis Application to synthetic biology DREAM
Circadian regulation in Arabidopsis thaliana
Collaboration with the Institute of Molecular Plant Sciences at Edinburgh University (Andrew Millar’s group) - Focus on: 9 circadian genes: LHY, CCA1, TOC1, ELF4, ELF3, GI, PRR9, PRR5, and PRR3 - Four time series measured under constant light condition at 13 time points: 0h, 2h,…, 24h, 26h - Seedlings entrained with different light:dark cycles between 10h:10h (T 20 ) and 14h:14h (T 28 ). Circadian rhythms in Arabidopsis thaliana
Posterior probability of changepoints
Sample of high-scoring networks
Marginal posterior probabilities of the edges P=1 P=0 P=0.5 Predict an interaction if marginal posterior probability > 0.5
Plant Clockwork from the literature Review – Rob McClung, Plant Cell 2006 Two major gene classes… Morning genes e.g. LHY, CCA1 … repress evening genes e.g. TOC1, ELF3, ELF4, GI, LUX … which activate LHY and CCA1
CCA1 LHY PRR9 GI ELF3 TOC1 ELF4 PRR5 PRR3 False negative Which interactions from the literature are found? True positive Blue: activations Red: Inhibitions
CCA1 LHY PRR9 GI ELF3 TOC1 ELF4 PRR5 PRR3 False negative Which interactions from the literature are found? True positive Blue: activations Red: Inhibitions True positives (TP) = 8 False negatives (FN) = 5 Recall= 8/13= 62%
Which proportion of predicted interactions are confirmed by the literature? False positives Blue: activations Red: Inhibitions True positive
Which proportion of predicted interactions are confirmed by the literature? False positives Blue: activations Red: Inhibitions True positive True positives (TP) = 8 False positives (FP) = 13 Precision = 8/21= 38%
Precision= 38% CCA1 LHY PRR9 GI ELF3 TOC1 ELF4 PRR5 PRR3 Recall= 62%
True positives (TP) = 8 False positives (FP) = 13 False negatives (FN) = 5 True negatives (TN) = 9² = 55 Sensitivity = TP/[TP+FN] = 62% Specificity = TN/[TN+FP] = 81% Recall Proportion of avoided non-interactions
Core plant clock model X LHY/ CCA1 TOC1 Y (GI) PRR9/ PRR7 Morning Evening Locke et al. Mol. Syst. Biol. 2006
Core plant clock model X LHY/ CCA1 TOC1 Y (GI) PRR9/ PRR7 Morning Evening Locke et al. Mol. Syst. Biol Yes
Non-stationarity in the regulatory process
Non-stationarity in the network structure
Flexible network structure.
Flexible network structure with regularization
ICML 2010
Morphogenesis in Drosophila melanogaster Gene expression measurements over 66 time steps of 4028 genes (Arbeitman et al., Science, 2002). Selection of 11 genes involved in muscle development. Zhao et al. (2006), Bioinformatics 22
Transition probabilities: flexible structure with regularization Morphogenetic transitions: Embryo larva larva pupa pupa adult
Overview Introduction Methodology Circadian regulation in Arabidopsis Application to synthetic biology DREAM
Can we learn the switch Galactose Glucose? Can we learn the network structure?
NIPS 2010
Node 1 Node i Node p Hierarchical Bayesian model Segment H
Exponential versus binomial prior distribution Exploration of various information sharing options
Task 1: Changepoint detection Switch of the carbon source: Galactose Glucose
Task 2: Network reconstruction Precision Proportion of identified interactions that are correct Recall Proportion of true interactions that we successfully recovered
BANJO: Conventional homogeneous DBN TSNI: Method based on differential equations Inference: optimization, “best” network
Sample of high-scoring networks
Marginal posterior probabilities of the edges P=1 P=0 P=0.5
Keep interactions with a posterior probability > 0.5 Better evaluation: Consider all possible thresholds Precision-recall curves
P=1 P=0 P=0.5 True network Thresh TP FP FN Prec Recall Precision= TP/(TP+FP) Recall= TP/(TP+FN)
P=1 P=0 P=0.5 True network Thresh0.9 TP1 FP0 FN1 Prec1 Recall1/2 Precision= TP/(TP+FP) Recall= TP/(TP+FN)
P=1 P=0 P=0.5 True network Thresh TP12 FP11 FN10 Prec12/3 Recall1/21 Precision= TP/(TP+FP) Recall= TP/(TP+FN)
P=1 P=0 P=0.5 True network Thresh TP122 FP112 FN100 Prec12/31/2 Recall1/211 Precision= TP/(TP+FP) Recall= TP/(TP+FN)
Galactose
Glucose
PriorCouplingAverage AUC None 0.70 ExponentialHard0.77 BinomialHard0.75 BinomialSoft0.75 Average performance over both phases: Galactose and glucose
How are we getting from here …
… to there ?!
Overview Introduction Methodology Circadian regulation in Arabidopsis Application to synthetic biology DREAM
DREAM: Dialogue for Reverse Engineering Assessments and Methods International network reconstruction competition: June-Sept 2010 Network# Transcription Factors # Genes# Chips Network 1 (in silico) Network Network Network
Marco Grzegorczyk University of Dortmund Germany Frank Dondelinger BioSS / University of Edinburgh United Kingdom Sophie Lèbre Université de Strasbourg France Our team Andrej Aderhold BioSS / University of St Andrews United Kingdom
Our model: Developed for time series Data: Different experimental conditions, perturbations (e.g. ligand injection), interventions (e.g. gene knock-out, overexpression), time points
Change-point process Free allocation
Our model: Developed for time series Data: Different experimental conditions, perturbations (e.g. ligand injection), interventions (e.g. gene knock-out, overexpression), time points To limit computational complexity: Stick to a changepoint process How do we get an ordering of the genes?
PCA
SOM
No time series Use 1-dim SOM to get a chip order
Ordering of chips changepoint model
Slow MCMC convergence Network# Transcription Factors # Genes# Chips Network 1 (in silico) Network Network Network
Problems with MCMC convergence Network# Transcription Factors # Genes# Chips Network 1 (in silico) Network Network Network PNAS 2009
Problems with MCMC convergence Network# Transcription Factors # Genes# Chips Network 1 (in silico) Network Network Network PNAS 2009
Methods competing in the competition Area under the precision-recall curve
Room for improvement: Higher-dimensional changepoint process Perturbations Experimental conditions
Marco Grzegorczyk University of Dortmund Germany Frank Dondelinger BioSS / University of Edinburgh United Kingdom Sophie Lèbre Université de Strasbourg France Acknowledgements Andrej Aderhold BioSS / University of St Andrews United Kingdom