Keck spectroscopy and dynamical masses for a large sample of 1 < z < 1.6 passive red galaxies Sirio Belli with Andrew B. Newman and Richard S. Ellis ApJ,

Slides:



Advertisements
Similar presentations
Spectacular Shells in the Host Galaxy of the QSO MC Nicola Bennert University of California Riverside Collaborators: Gabriela Canalizo, Bruno.
Advertisements

The Role of Dissipation in Galaxy Mergers Sadegh Khochfar University of Oxford.
Formation of Globular Clusters in  CDM Cosmology Oleg Gnedin (University of Michigan)
Unresolved X-Ray Sources in Intermediate Redshift Cluster Fields Unresolved X-Ray Sources in Intermediate Redshift Cluster Fields S. Fawcett, A. Hicks,
Current work on AO NACO archive data on deep fields: SR across the field limit mag. morphology NICMOS VLT-NACO ghosts.
Forming Early-type galaxies in  CDM simulations Peter Johansson University Observatory Munich Santa Cruz Galaxy Workshop 2010 Santa Cruz, August 17 th,
Kevin Bundy, Caltech The Mass Assembly History of Field Galaxies: Detection of an Evolving Mass Limit for Star-Forming Galaxies Kevin Bundy R. S. Ellis,
P. Saracco 1 M. Longhetti 1, A. Gargiulo 1 1 INAF – Osservatorio Astronomico di Brera, Milano Italy Galaxy Evolution and Environment - Bologna, November.
The two phases of massive galaxy formation Thorsten Naab MPA, Garching UCSC, August, 2010.
Weak-Lensing selected, X-ray confirmed Clusters and the AGN closest to them Dara Norman NOAO/CTIO 2006 November 6-8 Boston Collaborators: Deep Lens Survey.
ULTRALUMINOUS INFRARED GALAXIES: 2D KINEMATICS AND STAR FORMATION L. COLINA, IEM/CSIC S. ARRIBAS, STSCI & CSIC D. CLEMENTS, IMPERIAL COLLEGE A. MONREAL,
The Evolution of X-ray Luminous Groups Tesla Jeltema Carnegie Observatories J. Mulchaey, L. Lubin, C. Fassnacht, P. Rosati, and H. Böhringer.
Evolution of Galaxy groups Michael Balogh Department of Physics University of Waterloo.
Cosmological formation of elliptical galaxies * Thorsten Naab & Jeremiah P. Ostriker (Munich, Princeton) T.Naab (USM), P. Johannson (USM), J.P. Ostriker.
Establishing the Connection Between Quenching and AGN MGCT II November, 2006 Kevin Bundy (U. of Toronto) Caltech/Palomar: R. Ellis, C. Conselice Chandra:
Dynamical state and star formation properties of the merging galaxy cluster Abell 3921 C. Ferrari 1,2, C. Benoist 1, S. Maurogordato 1, A. Cappi 3, E.
Dissecting the Red Sequence: Stellar Population Properties in Fundamental Plane Space Genevieve J. Graves, S. M. Faber University of California, Santa.
Optical Spectroscopy of Distant Red Galaxies Stijn Wuyts 1, Pieter van Dokkum 2 and Marijn Franx 1 1 Leiden Observatory, P.O. Box 9513, 2300RA Leiden,
Galactic Metamorphoses: Role of Structure Christopher J. Conselice.
The assembly of stellar mass during the last 10 Gyr: VVDS results B.Garilli on behalf of the VVDS consortium 1 topic, 4 approaches, concordant results.
Luminosity and Mass functions in spectroscopically-selected groups at z~0.5 George Hau, Durham University Dave Wilman (MPE) Mike Balogh (Waterloo) Richard.
Renzini Ringberg The cosmic star formation rate from the FDF and the Goods-S Fields R.P. Saglia – MPE reporting work of/with R. Bender, N.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Black Hole Growth and Galaxy Evolution Meg Urry Yale University.
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
Massive Galaxies over Cosmic Time II Tucson, AZ Nov 1, 2006 Dynamical Models of Elliptical Galaxies in z=0.5 Clusters Measuring M/L Evolution without Fundamental.
KASI Galaxy Evolution Journal Club The Morphology of Passively Evolving Galaxies at z~2 from Hubble Space Telescope/WFC3 Deep Imaging in the Hubble Ultra.
Obesity in the Universe: How Did Early Type Galaxies Become so Fat? Richard Ellis & Drew Newman (Caltech) CIFAR April 6th 2012.
Scaling relations of spheroids over cosmic time: Tommaso Treu (UCSB)
IAU Jong-Hak Woo Univ. California Santa Barbara Collaborators: Tommaso Treu (UCSB), Matt Malkan (UCLA), & Roger Blandford (Stanford) Cosmic Evolution.
Fueling QSOs: The Relevance of Mergers Nicola Bennert University of California Riverside in collaboration with Gabriela Canalizo (UCR), Bruno Jungwiert.
Reconstructing the formation of massive early-type galaxies from their SHARDS Pablo G. Pérez-González SHARDS Team: A. Cava, G. Barro, M. Balcells, N. Cardiel,
Jessica Lu (UH IfA) Andrew Mann (UT Austin) Radial trends in IMF-sensitive absorption features in two early-type galaxies: evidence for abundance-driven.
With: V. Smolcic, A. Karim,, B. Magnelli, A.Zirm, M. Michalowski, P. Capak, K. Sheth, K. Schawinski, S. Wuyts, D. Sanders, A. Man, D. Lutz, J. Staguhn,
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
A wide field multi-wavelength survey of two clusters at z~0.5 Tommaso Treu (UCSB)
Delayed mergers: The contribution of ellipticals, globular clusters, and protoclusters to the LIGO detection rate Aug 16, 2005 Richard O’Shaughnessy (
The Star Formation Histories of Red Sequence Galaxies Mike Hudson U. Waterloo / IAP Steve Allanson (Waterloo) Allanson, MH et al 09, ApJ 702, 1275 Russell.
The star formation history of the local universe A/Prof. Andrew Hopkins (AAO) Prof. Joss Bland-Hawthorn (USyd.) & the GAMA Collaboration Madusha L.P. Gunawardhana.
The Role of Galaxy Mergers in Forming the Red-Sequence Galaxies
Z-FOURGE - the FourStar Galaxy Evolution Survey Status Report at the 1.3-year mark.
Spitzer Imaging of i`-drop Galaxies: Old Stars at z ≈ 6 Laurence P. Eyles 1, Andrew J. Bunker 1, Elizabeth R. Stanway 2, Mark Lacy 3, Richard S. Ellis.
Galactic structure and star counts Du cuihua BATC meeting, NAOC.
Environmental Dependence of Brightest Cluster Galaxy Evolution Sarah Brough, Liverpool John Moores University Chris Collins, Liverpool John Moores University.
Assembly of Massive Elliptical Galaxies
GEMS Collaboration Meeting Baltimore, Jan 20-21, 2003 What do we want to accomplish?  Get to know each other  Take stock of our status quo –Data, software.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini THE ORIGIN OF GALAXIES: LESSONS FROM THE DISTANT.
The dependence on redshift of quasar black hole masses from the SLOAN survey R. Decarli Università dell’Insubria, Como, Italy A. Treves Università dell’Insubria,
David R. Law Hubble Fellow, UCLA The Physical Structure of Galaxies at z ~ John McDonald, CFHT Galaxies in the Distant Universe: Ringberg Castle.
Formation and evolution of early-type galaxies Pieter van Dokkum (Yale)
Present-Day Descendants of z=3.1 Ly  Emitting (LAE) Galaxies in the Millennium-II Halo Merger Trees Jean P. Walker Soler – Rutgers University Eric Gawiser.
The evolution of galaxy sizes since z=3 Ignacio Trujillo (MPIA) & the FIRES team (Trujillo et al. 2004, ApJ, 604, 521) (Trujillo et al. 2005, ApJ, submitted,
Nearby mergers: ellipticals in formation? Thorsten Naab University Observatory, Munich October 4th, 2006 From the Local Universe to the Red Sequence Space.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Star Forming Proto-Elliptical z>2 ? N.Arimoto (NAOJ) Subaru/Sup-Cam C.Ikuta (NAOJ) X.Kong (NAOJ) M.Onodera (Tokyo) K.Ohta (Kyoto) N.Tamura (Durham)
Speaker: Dave Wilman (MPE) Collaborators: Mike Balogh (Waterloo), George Hau, Richard Bower (Durham); John Mulchaey, Gus Oemler (Carnegie); Ray Carlberg.
The GOOD NICMOS Survey (GNS): Observing Massive Galaxies at z > 2 Christopher J. Conselice (University of Nottingham) with Asa Bluck, Ruth Gruethbacher,
What can we learn from High-z Passive Galaxies ? Andrea Cimatti Università di Bologna – Dipartimento di Astronomia.
Galaxy mass-to-light ratios at z> 1 from the Fundamental Plane: measuring the star formation epoch and mass evolution of galaxies van der Wel, Rix, Franx,
Mass Profiles of Galaxy Clusters Drew Newman Newman et al. 2009, “The Distribution of Dark Matter Over Three Decades in Radius in the Lensing Cluster Abell.
Galaxy evolution in z=1 groups The Gemini GEEC2 survey Michael Balogh Department of Physics and Astronomy University of Waterloo.
9 Gyr of massive galaxy evolution Bell (MPIA), Wolf (Oxford), Papovich (Arizona), McIntosh (UMass), and the COMBO-17, GEMS and MIPS teams Baltimore 27.
The Mass-Dependent Role of Galaxy Mergers Kevin Bundy (UC Berkeley) Hubble Symposium March, 2009 Masataka Fukugita, Richard Ellis, Tom Targett Sirio Belli,
Bologna The size evolution of early-type galaxies since z=2 P. Saracco 1, M. Longhetti 1, with the contribution of S. Andreon 1, A. Mignano.
Massive galaxies in massive datasets M. Bernardi (U. Penn)
The Active to Passive Transition Alvio Renzini, Ringberg Schloss, May 21, 2010 ● Star Formation ceases in many galaxies, first in the most massive ones,
William E. Harris McMaster University
Galaxy Populations in the Most Distant Clusters
The Evolving Luminosity Function of Red Galaxies
Presentation transcript:

Keck spectroscopy and dynamical masses for a large sample of 1 < z < 1.6 passive red galaxies Sirio Belli with Andrew B. Newman and Richard S. Ellis ApJ, submitted (arXiv: ) Deconstructing Galaxies – Santiago – November 19, 2013

Introduction The population of quiescent galaxies grow in size over 0 < z < 2.5 (e.g., Daddi et al. 2005, Trujillo et al. 2006, van Dokkum et al. 2006, 2008, and many others) 2 Newman et al R e (kpc) log M ★ (M  ) 0.4 < z < 11 < z < < z < < z < 2.5

Two Explanations for the Size Growth 3 Very open debate: Taylor et al. 2010, Newman et al. 2012, Carollo et al. 2013, Poggianti et al Damjanov et al log stellar mass log size z = 2 Newly quenched quiescent galaxies drive the size growth (progenitor bias) z = 0 Old quiescent galaxies physically grow in size What physical process? z = 0

Velocity Dispersions Instead of looking at the population growth, we look at the physical growth We need a way to connect progenitors and descendants Numerical simulations show that velocity dispersions are very stable (e.g. Hopkins et al. 2009, Oser et al. 2012) We assume that σ is constant with cosmic time 4 z = 2 z = 0 σ

Data 5 (V-J) rest-frame (U-V) rest-frame Keck LRIS CANDELS fields 3 – 8 hours per mask 1 < z < total galaxies 69 quiescent 56 quiescent with S/N > 8

Spectra 6 [OII] Ca H & K Balmer lines

Physical Properties 7 HST CANDELS F160W + GALFIT (Peng et al. 2002) Keck LRIS spectra + pPXF (Cappellari & Emsellem 2004) Public photometry + FAST (Kriek et al. 2009) σeσe ReRe M★M★

Observed Evolution in Size and Sigma 8 log R e (kpc) log M ★ (M  ) log σ e (km/s) z = 0 z > 1

Dynamical Masses 9 log M dyn (M  ) log M ★ (M  ) The M dyn - M ★ relation is constant with redshift

Velocity Dispersions are Important 10 log R e (kpc) log σ e (km/s) age 10 Gyr  z form = 1.6 no age trend at fixed σ Results from local universe studies (Graves et al. 2009) These galaxies must physically grow

Model 1: Fixed Dispersion 11 log R e (kpc) log M ★ (M  ) Δ log R e Δ log M ★

Model 1: Inferring the Growth 12 Δ log M ★ Δ log R e Our result: Observed size growth of 0.25 dex Consistent with minor merging identical merger: minor merger: (Hernquist et al. 1993, Naab et al. 2009, Hilz et al. 2013, and many others)

Model 2: Fixed Dispersion Ranking 13 log M ★ (M  ) log R e (kpc) Bezanson et al The number density of galaxies with σ > 280 km/s is constant! There is a 1:1 relation between the high- and low-redshift populations in this plot

Model 2: Inferring the Growth 14 Δ log R e Δ log M ★ Strong size growth of individual galaxies (0.5 ± 0.1 dex) Consistent with minor merging

Work in Progress z = 2.09 σ = (321 ± 40) km/s 15 log R e (kpc) log σ e (km/s) At z > 1.5, quiescent galaxies are even smaller Minor merger rate might not be high enough (e.g. Newman et al. 2012, Nipoti et al. 2012)

Conclusions Quiescent galaxies at z>1 have smaller sizes and larger dispersions than their local counterparts The dynamical-stellar mass relation does not change with redshift By assuming that the velocity dispersion does not change, we find significant evolution in mass and size By assuming that the velocity dispersion ranking does not change, we find an even stronger evolution in mass and size Both results are in agreement with simulations of minor merging Progenitor bias alone cannot be responsible for the observed size evolution 16

SUPPLEMENTARY SLIDES 17

Completeness 18 log R e (kpc) log M ★ (M  ) CANDELS photometric sample our spectroscopic sample

Galaxy Structure: Non-Homology 19

Measuring Velocity Dispersions: Tests 20

Inferred Velocity Dispersions 21