MECH4450 Introduction to Finite Element Methods Chapter 3 FEM of 1-D Problems: Applications
Plane Truss Problems Example 1: Find forces inside each member. All members have the same length L. E = 10 GPa, A = 1 cm 2, L = 1 m, F = 10 kN F
Arbitrarily Oriented 1-D Bar Element on 2-D Plane P1 u1P1 u1 P2 u2P2 u2
x y
Stiffness Matrix of 1-D Bar Element on 2-D Plane Q 2, v 2 P 2, u 2 Q 1, v 1 P 1, u 1
Matrix Assembly of Multiple Bar Elements Element I I I
Matrix Assembly of Multiple Bar Elements Element I I I
Matrix Assembly of Multiple Bar Elements Apply known boundary conditions
Solution Procedures u 2 = 4FL/5AE, v 1 = 0
Recovery of Axial Forces Element I I I
Stresses inside members Element I I I
Governing Equation and Boundary Condition Governing Equation Boundary Conditions <x<L q(x) x y
Weak Formulation for Beam Element Weighted-Integral Formulation for one element V(x 2 ) x = x 1 M(x 2 ) q(x) y x x = x 2 V(x 1 ) M(x 1 ) L = x 2 -x 1 Weak Form from Integration-by-Parts
Weak Formulation Weak Form Q3Q3 x = x 1 Q4Q4 q(x) y(v) x x = x 2 Q1Q1 Q2Q2 L = x 2 -x 1
Ritz Method for Approximation Let w(x)= i (x), i = 1, 2, 3, 4 Q3Q3 x = x 1 Q4Q4 q(x) y(v) x x = x 2 Q1Q1 Q2Q2 L = x 2 -x 1 where
Derivation of Shape Function for Beam Element In the global coordinates:
Element Equations of 4 th Order 1-D Model u3u3 x = x 1 u4u4 q(x) y(v) x x = x 2 u1u1 u2u2 L = x 2 -x 1 x=x 2 x=x 1 1 3 3 2 2 4 4
Element Equations of 4 th Order 1-D Model u3u3 x = x 1 u4u4 q(x) y(v) x x = x 2 u1u1 u2u2 L = x 2 -x 1
Finite Element Analysis of 1-D Problems Example 1. Finite element model: P 1, v 1 P 2, v 2 P 3, v 3 P 4, v 4 M 1, 1 M 2, 2 M 3, 3 M 4, 4 I II III Discretization: F L L L
Matrix Assembly of Multiple Beam Elements Element I I
Matrix Assembly of Multiple Beam Elements Element I I
Solution Procedures Apply known boundary conditions
Solution Procedures
Shear Resultant & Bending Moment Diagram
Plane Frame Frame: combination of bar and beam E, A, I, L Q 1, v 1 Q 3, v 2 Q 2, 1 P 1, u 1 Q 4, 2 P 2, u 2
Finite Element Model of an Arbitrarily Oriented Frame x y x y
local global
Plane Frame Analysis - Example Rigid Joint Element II Element I F F
Plane Frame Analysis P 1, u 1 P 2, u 2 Q 2, 1 Q 4, 2 Q 1, v 1 Q 3, v 2
Plane Frame Analysis P 1, u 2 Q 3, v 3 Q 2, 2 Q 4, 3 Q 1, v 2 P 2, u 3
Plane Frame Analysis