N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.

Slides:



Advertisements
Similar presentations
EIS/Solar-B: EIS information that was sent to System Side EIS subsystems: EIS consists of three EIS subsystems. (a) STR: Structure, (b) HAR: Harness, (c)
Advertisements

Brazilian Tunable Filter Imager (BTFI) Preliminary Design Review (PDR)‏ USP-IAG Universidade de São Paulo 18-19th June 2008 iBTF module Prototyping Version.
November 20, 2003University of Colorado The Off-Plane Option Study Results Potential Capabilities Webster Cash University of Colorado.
Practical Optics Class Opti696D, Fall Laser Bar Code Scanner Chunyu Zhao.
SXC meeting SRON, July 19-20, SXC meeting 19-20/07/2007 Alignment Positioning of mirror with respect to detector (internal). Positioning of total.
Aug.19, 1999 George T. Roach Integration Mission Design Center NASA- GSFC Code 543 Greenbelt, MD FAX
The Field of View of a Thin Lens Interferometer Baseline=2B F F=range from array center to detector  ’’  Nulled here. B B 2Bsin  Bsin  2 Channels.
GRIPS Imaging Subsystem Gordon Hurford GRIPS Kickoff Meeting 22-Sept-08.
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
NGAO Alignment Plan See KAON 719 P. Wizinowich. 2 Introduction KAON 719 is intended to define & describe the alignments that will need to be performed.
Constellation Orion Visible Light Constellation Orion Infrared Light.
PALM-3000 Systems Engineering R. Dekany, A. Bouchez 9/22/10 Integration & Testing Review.
Source lens Entrance slit Exit slit width,  (mm) grating Concave mirrors Focal Plane Focal Length, F (mm)
Non-contact measurement of large format detectors and thermal blanket material surrounding the flight instruments of JWST Edwin Olaya 1, Agossa Segla 1,
Optical characteristics of the EUV spectrometer for the normal-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Grazing-incidence design and others L. Poletto Istituto Nazionale per la Fisica della Materia (INFM) Department of Electronics and Informatics - Padova.
Final Version Bob G. Beaman May 13-17, 2002 Micro-Arcsecond Imaging Mission, Pathfinder (MAXIM-PF) Electrical Power System (EPS)
Optical characteristics of the EUV spectrometer (EUS) for SOLO L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia (INFM) Department.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n s t r u m e n t S y n t h e s i s a n d A n a l y s i s L a b o r a t o r y Super Star Tracker.
Final Version Wes Ousley Dan Nguyen May 13-17, 2002 Micro-Arcsecond Imaging Mission, Pathfinder (MAXIM-PF) Thermal.
1 Mirror subsystem: telescope structure Functions: Functions: Support mirrors subsystem to S/C Support mirrors subsystem to S/C Accommodate cryostat Accommodate.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
Engineering: NAHUAL Ireland Acquisition Camera, Focal Plane Mechanisms and Layout Tully Peacocke, National University of Ireland Maynooth Carlos del Burgo,
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
PACS IIDR 01/02 Mar 2001 FPFPU Alignment1 D. Kampf KAYSER-THREDE.
Chang,Liang YNAO,CAS July 09-10,2011 Fore Parts of Optical Design Scheme of FASOT (from telescope to spectrograph)
High Resolution Echelle Spectrograph for Chinese Weihai 1m Telescope. Leiwang, Yongtian Zhu, Zhongwen Hu Nanjing institute of Astronomical Optics Technology.
The Second International Workshop on Ultra-high-energy cosmic rays and their sources INR, Moscow, April 14-16, 2005 from Extreme Universe Space Observatory.
NORDFORSK Summer School, La Palma, June-July 2006 NOT: Telescope and Instrumentation Michal I. Andersen & Heidi Korhonen Astrophysikalisches Institut Potsdam.
SAM PDR1 S OAR Adaptive Module LGS LGSsystem Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena.
MAXIM Webster Cash University of Colorado. Capella ”
Progress Report Geo-CAPE Coastal Ecosystem Dynamics Imager (CEDI) IRAD Repackaging Study Jason Budinoff / GSFC Cathy Marx / GSFC May 12, 2011.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
DRM1 design description SDT 5/17/12 1. WFIRST DRM candidate design summary At SDT6 2/2-3/2012 consensus for full-up mission, aka “DRM1” was: 1.3m aperture,
EAS Reconstruction with Cerenkov Photons Shower Simulation Reconstruction Algorithm Toy MC Study Two Detector Configuration Summary M.Z. Wang and C.C.
Final Version Gabe Karpati May 17, 2002 Micro-Arcsecond X-ray Imaging Mission, Pathfinder (MAXIM-PF) System Overview.
20 OCT 2003SOLAR ORBITER MEETING1 Optical Design Activities at RAL Kevin Middleton Optical Systems Group Space Science & Technology Dep’t. Rutherford Appleton.
MAXIM Periscope ISAL Study Highlights ISAL Study beginning 14 April 2003.
1 The slides in this collection are all related and should be useful in preparing a presentation on SIM PlanetQuest. Note, however, that there is some.
Image Quality –Which Metric Should I Choose? Jed Hancock Optical Sciences 521.
Henry Heetderks Space Sciences Laboratory, UCB
Engineering Division 1 M321/M331 Mirror Switchyard Design Review Tom Miller
Grid Fabrication and Characterization Brian Dennis, GSFC Gordon Hurford, UCB.
Optical characteristics of the EUV spectrometer for the grazing-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Solar orbiter_______________________________________________.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
Periscope Configuration
Charles University Prague Charles University Prague Institute of Particle and Nuclear Physics Absolute charge measurements using laser setup Pavel Bažant,
CREATION OF DIGITAL SURFACE MODELS USING RESURS-P STEREO PAIRS Alexey Peshkun Deputy Head of Department 15th International Scientific and Technical Conference.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
Final Version Gary Davis Robert Estes Scott Glubke Propulsion May 13-17, 2002 Micro Arcsecond X-ray Imaging Mission, Pathfinder (MAXIM-PF)
Wes Ousley June 28, 2001 SuperNova/ Acceleration Probe (SNAP) Thermal.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n s t r u m e n t S y n t h e s i s a n d A n a l y s i s L a b o r a t o r y APS Formation Sensor.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
EXTP Accomodation Study Hong Bin, Zhang Long Institute of Spacecraft System Engineering. CAST Oct 27th, 2015.
Solar Orbiter EUS: Thermal Design Progress Bryan Shaughnessy, Rutherford Appleton Laboratory 1 Solar Orbiter EUV Spectrometer Thermal Design Progress Bryan.
PACS IIDR 01/02 Mar 2001 Optical System Design1 N. Geis MPE.
X-ray Interferometer Mirror Module ISAL Study Pre-work Overview.
Micro Arcsecond X-ray Imaging Mission Pathfinder (MAXIM-PF) Mechanical George Roach Dave Peters 17 May 2002 “Technological progress is like an axe in the.
Webster Cash Keith Gendreau and The Maxim Team MAXIM The Black Hole Imager.
Il programma NHXM sviluppato dall'ASI Ing. Mauro Piermaria New Hard X-Ray Mission Workshop Nazionale 12 e 13 novembre 2009 – ASDC, Frascati.
Development of Micro-Pore Optics at NAOC MPO research group X-ray Imaging Laboratory, NAOC Presented by Chen Zhang.
MAXIM Pathfinder IMDC Study 13 May Science Team Keith Gendreau Code 662 GSFC Webster CashUniversity of Colorado Ann ShipleyUniversity of Colorado.
Internal CDR meeting December 20th, 2005
Astronomical Spectroscopic Techniques
Chen Yong 陈勇 Institute of High Energy Physics, CAS
IR Detector - Test cryostat : Machining
AIRS (Atmospheric Infrared Sounder) Instrument Characteristics
XRT Performance Update
THERMAL CONTROL SYSTEM
Presentation transcript:

N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y MAXIM Periscope Module Instrument Systems Engineering Deborah Amato 25 April 2003

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p2 Final Version 25 April 2003 MAXIM Periscope Module A Pair of MAXIM Periscopes Detector Periscope Module X Z

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p3 Final Version 25 April 2003 MAXIM Periscope Module Launch Configuration 1 Detector spacecraft 26 Periscope spacecraft for 1000 cm 2 of collecting area: –25 free-flyers with 4 periscopes each –1 hub with 12 periscopes Free-flyer Hub and Detector spacecraft stacked Launch fairing envelope

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p4 Final Version 25 April 2003 MAXIM Periscope Module Operational Configuration at L2 S/CDist from hub (m)

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p5 Final Version 25 April 2003 MAXIM Periscope Module Periscope Coordinate System X Roll Y Pitch Yaw Z=LOS

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p6 Final Version 25 April 2003 MAXIM Periscope Module MAXIM Periscope Requirements Low mass and power Mounted mirror surface quality = rms for  = 1  Difference in entrance and exit mirror-pair spacing,  h Optical Path Difference between periscopes, OPD < x-ray /10 = 1Å Relative Strehl ratio > 80% Position Tolerances – next slide Must be able to open and close periscope aperture Must be able to align images on the detector plane MAXIM Mission Periscope Parameters for this study –Periscope spacecraft swarm diameter, D = 1 km* –Focal length, F = 20,000 km* –Mirror length, m = 30 cm –Mirror width = 20 cm –Graze angle,  = 1  –Wavelength, = 10Å * different values used in optical analysis

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p7 Final Version 25 April 2003 MAXIM Periscope Module MAXIM Position Tolerances =1nm, F=20,000km, D=1km, m=30cm,  =1deg,  h=1  m DOFMirror Equation Periscope Equation Mirror Tolerance Periscope Tolerance X ±1.7nm ±4  m Y ±0.3mm± 0.5mm Z ±94.7nm±0.32m X-rot (yaw) ±6.9 arcmin ± 7.8 arcmin Y-rot (pitch) ±2.3 marcsec ± 10 arcsec Z-rot (roll) ±0.13 arcsec ±18.5 arcsec

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p8 Final Version 25 April 2003 MAXIM Periscope Module  h and OPD – Key Requirements h2h2 h1h  = 1  OPD < x-ray /10

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p9 Final Version 25 April 2003 MAXIM Periscope Module Trade Studies Mirror width: 2 cm, 10 cm, 20 cm, 30 cm –Need to quantify the flux requirement for initial calibration –Baseline design: 20 cm wide mirrors –Trade mirror size versus number of spacecraft – discussed in Optical Analysis section –Consider 20 cm versus 30 cm wide mirrors in future studies Mounted mirror surface quality is dependent on graze angle: rms for  = 1  rms for  = 2  –Chose  = 1  for this baseline design Internal metrology –Baseline design uses absolute position encoders calibrated with lasers in ground testing.

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p10 Final Version 25 April 2003 MAXIM Periscope Module Periscope Mass Summary

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p11 Final Version 25 April 2003 MAXIM Periscope Module Periscope Power Summary Spacecraft Power Bus Requirement End ItemsAvg. Power 1 Main Electronics Box 26.6 Watts 1 Watt each 1 Watts Drive 1 Watt each 1 Watt Heaters 25 Watts Instrument Total: 53.6 Watts

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p12 Final Version 25 April 2003 MAXIM Periscope Module Future Studies This study looked at internal periscope issues – periscope to periscope tolerancing issues still need to be addressed. –Look at operational control and/or mechanical options Mirror width –2 cm width feasible? –30 cm width versus fewer spacecraft –Mirror material is a factor in this trade (silicon vs. ULE) Further thermal and mechanical design optimization should be done. See other subsystem presentations for other potential issues.

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p13 Final Version 25 April 2003 MAXIM Periscope Module Up Next Dennis Evans will discuss the optical analysis next.

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p14 Final Version 25 April 2003 MAXIM Periscope Module Backup

I n s t r u m e n t S y n t h e s i s & A n a l y s i s L a b o r a t o r y Instrument Systems Engineering, p15 Final Version 25 April 2003 MAXIM Periscope Module OPD The Optical Path Difference (OPD) between any two periscopes must be within 1Å. The OPD must be changeable with a larger (TBD) range. Ways to introduce Optical Path Differences: –Move mirrors 2 and 3 together (or 1 and 4 together) to get an OPD of 2  sin(  ); 3 nm of motion  1Å OPD –Move 1 mirror, range is less than ~1 micron to preserve  h; 1.5 nm of mirror motion  1Å OPD –Rotate a mirror pair by 1 milliarcsecond for 1Å of OPD –Move the entire periscope;  z of 30 cm  1Å OPD (remember periscopes are tied together in each spacecraft) –Move a mirror pair (1 and 2 or 3 and 4) in the X direction