133 Xe, 133 Xe m and 133 I decay evaluations CIEMAT M. GALAN.

Slides:



Advertisements
Similar presentations
 -Ray Emission Probabilities Edgardo Browne Decay Data Evaluation Project Workshop May 12 – 14, 2008 Bucharest, Romania.
Advertisements

Contributions to Nuclear Data by Radiochemistry Division, BARC
Evaluation of the absolute emission probability of 1077 keV  -ray for 68 Ga Huang Xiaolong 2013 , 6 China Nuclear Data Center China Institute of Atomic.
Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University DDEP Workshop 12-May-2008 New Theoretical Conversion Coefficients. Comparison with.
Brookhaven Science Associates U.S. Department of Energy ENSDF Analysis and Utility Codes Presentation for the ICTP-IAEA Workshop on Nuclear Structure and.
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Discrepant Data. Program LWEIGHT Edgardo Browne Decay Data Evaluation Project Workshop May 12 – 14, 2008 Bucharest, Romania.
Evaluation the relative emission probabilities for 56 Co and 66 Ga Yu Weixiang Lu Hanlin Huang Xiaolong China Nuclear Data Center China Institute of Atomic.
Analysis and Results 3.Gamma-ray Spectra of 134 Cs The background subtracted spectra of 605 keV and 796 keV in multiple hit events, and their coincidence.
Precision tests of calculated internal-conversion coefficients: the case of 134 Cs. W. E. Rockwell Cyclotron Institute, TAMU Summer 2005 Advisor: J. C.
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Week 11 Lecture 27 Monday, Oct 30, 2006 NO CLASS : DPF06 conference Lecture 28 Wednesday, Nov 1, 2006 GammaDecaysGammaDecays Lecture 29 Friday, Nov 3,
Introduction Radioactive nuclei decay in numerous ways: emitting electrons, protons, neutrons, alpha particles, gamma rays, x-rays, or some combination.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
Chapter 9: Nuclear Chemistry
1Laboratoire National Henri Becquerel Decay data evaluation of Radium – 226 and its daughters V. Chisté, M. M. Bé, C. Dulieu.
The Nature of Molecules
Status Report of the Nuclear Structure and Decay Data evaluation activities at the Australian National University ( ) T. Kibèdi Tibor Kibèdi, Dep.
Jag Tuli NSDD, Vienna, 4/2015 ENSDF Policies 4/15 Jagdish Tuli* National Nuclear Data Center Brookhaven National Laboratory * Brookhaven.
Compilation and Evaluation of Beta-Delayed Neutron emission probabilities and half-lives of precursors in the Non-Fission Region (A ≤ 72) M. Birch and.
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
New limits on  + EC and ECEC processes in 74 Se and 120 Te A.S. Barabash 1), F. Hubert 2), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow,
Development of the Periodic Table. Mendeleev’s Periodic Table "...if all the elements be arranged in order of their atomic weights a periodic repetition.
Reactor Antineutrino Anomaly
The Nucleus and Radioactivity
Decay Data in View of Complex Applications Octavian Sima Physics Department, University of Bucharest Decay Data Evaluation Project Workshop May 12 – 14,
“Improved nuclear decay data for some new emerging medical isotopes”, IAEA Research Contract no /2012 Aurelian LUCA, National Institute of Physics.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Futoshi Minato JAEA Nuclear Data Center, Tokai Theoretical calculations of beta-delayed neutrons and sensitivity analyses 1.
Aurelian Luca (IFIN-HH, Romania) The Decay Data Evaluation Project – an international cooperation in the field of nuclear data.
A=193 Mass Chain evaluation: A summary IAEA-ICTP Workshop on Nuclear Structure and Decay Data: Theory and Evaluation, Trieste, Italy November
WHAT VALUES ARE BEST RECOMMENDED FOR ALPHA- AND GAMMA- ENERGIES IN DECAYS OF ACTINIDES? Valery Chechev V.G. Khlopin Radium Institute, Saint Petersburg,
ENSDF: Consistency (or lack thereof) in J π assignments (including Multipolarities) Balraj Singh McMaster University, Canada IAEA-ENSDF Workshop, Vienna.
Accurate gamma-ray spectrometry of environmental samples: a challenge O. Sima - Bucharest University D. Arnold - PTB Braunschweig C. Dovlete - ERL Bucharest.
Chapter 9 Nuclear Radiation
B. Singh and M. Birch 02/05/2013Beta-Delayed Neutron Data Evaluation Compilation and Evaluation of %P n and T 1/2 Data for β-delayed Neutron Emitters Balraj.
139 Ba decay: precise half-life measurement and gamma-spectroscopy at BARC: an offshoot of ENSDF evaluation work. P.K.Joshi Homi Bhabha Centre for Science.
Incomplete fusion studies near Coulomb barrier Pragya Das Indian Institute of Technology Bombay Powai, Mumbai , India.
Anti-neutrinos Spectra from Nuclear Reactors Alejandro Sonzogni National Nuclear Data Center.
National Nuclear Data Center Brookhaven National Laboratory Upton, NY USA Evaluated nuclear Structure Data Base J. K. Tuli.
The National Standard of the Radionuclides Activity Unit in Poland R. Broda, A. Chyliński, T. Radoszewski, K. Małetka, T. Terlikowska-Droździel Radioisotope.
Anisotropic dielectronic resonances from magnetic-dipole lines Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD, USA ADAS.
Korea Atomic Energy Research Institute (KAERI) Jounghwa Lee 21st NSDD Meeting, Vienna, Austria, April 2015.
Radioactivity Manos Papadopoulos Nuclear Medicine Department
Status Report of the Nuclear Structure and Decay Data evaluation activities at the Australian National University ( ) T. Kibèdi Tibor Kibèdi, Dep.
Modern Periodic Table Objective:
Submission of evaluations Completeness of evaluations
When latest data differ from earlier ones: An example of 187 Hg Shamsuzzoha Basunia Lawrence Berkeley National Laboratory Berkeley, CA Specialized.
Decay Scheme Normalizations. Reference Material NR – relative photon intensity to photons / 100 decays NT – relative transition intensity to transitions.
Nuclear Chemistry. Natural Radioactivity The spontaneous breakdown of atomic nuclei, accompanied by the release of some form of radiation.
1-1 Lecture 1: RDCH 702 Introduction Class organization §Outcomes §Grading Chart of the nuclides §Description and use of chart §Data Radiochemistry introduction.
E. Browne & J. Tuli USNDP Annual Meeting November 7-9, 2006 Absolute and Relative  -Ray Intensities in ENSDF E. Browne # and J.K. Tuli* National Nuclear.
DDEP-2008 Workshop, 2008, May 12-14, Bucharest, Romania 1 EVALUATION OF 236 U NUCLEAR DECAY DATA Aurelian Luca “Horia Hulubei” National Institute of Physics.
Proposal Inclusion of absolute atomic radiation energies and emission probabilities in decay data sets Tibor Kibèdi (ANU) and Filip Kondev (ANL) Tibor.
DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.
Brookhaven Science Associates U.S. Department of Energy Description and Use of HSICC ( Hager-Seltzer Internal Conversion Coefficients ) and BrIcc (Band-Raman.
ENSDF - NuDat Alejandro Sonzogni Needs and Links to ENSDF/NuDat Alejandro Sonzogni National Nuclear Data Center Brookhaven National Laboratory Upton, NY.
EGAF Status 2015 Richard B. Firestone Lawrence Berkeley National Laboratory and the University of California, Berkeley, 94720, USA 21 st Technical Meeting.
Example of Evaluation: Decay of 177 Lu (6.647 d) Filip G. Kondev 2 nd Workshop for DDEP Evaluators, Bucharest, Romania May 12-15,2008.
Decay scheme studies using radiochemical methods R. Tripathi, P. K. Pujari Radiochemistry Division A. K. Mohanty Nuclear Physics Division Bhabha Atomic.
Jag Tuli DDP-Workshop Bucharest, Romania, May 08 Jagdish K. Tuli NNDC Brookhaven National Laboratory Upton, NY 11973, USA Decay Scheme Normalization.
Observation of Octupole Correlations in Ba and Ce Nuclei
ISOLDE Workshop and Users Meeting 2017
Emission of Energy by Atoms and Electron Configurations
Periodic Table of the Elements
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
Electron Configurations
Line Spectra and the Bohr Model
Particle Emission Probabilities Edgardo Browne Decay Data Evaluation Project Workshop May 12 – 14, 2008 Bucharest, Romania.
Presentation transcript:

133 Xe, 133 Xe m and 133 I decay evaluations CIEMAT M. GALAN

SUMMARY Evaluation procedure DECAY SCHEME AND APPLICATIONS HALF-LIFE MEASUREMENTS RELATIVE GAMMA-RAY PROBABILITIES NORMALIZATION AND ABSOLUTE GAMMA-RAY PROBABILITIES GAMMA TRANSITIONS AND MULTIPOLARITIES BETA TRANSITION PROBABILITIES ATOMIC DATA SECONDARY EMISSIONS (X-RAY AND AUGER ELECTRON PROBABILITIES)

SHORT A=133 CHAIN EVALUATED 133 I 133 Xe 133 Cs   133 Xe m I.T.

Applications 133 Xe is used in medical studies for: Diagnostic evaluation in pulmonary function. Imaging the lung. Assessment of cerebral blood flow. Fetal risk diagnoses. 133 I, 133 Xe m and 133 Xe are fission products. Xenon isotopes are of particular interest in reactor operation.

133 Xe decay scheme Ensdat file

133 Xe Half-life measurements ReferenceValue (d)Comments 2002UN02, 1992UN HO WO CA FOZY 1972EM AL MA15 5,2475 (5) 5,25 (2) 5,250 (13) 5,245 (6) 5,240 (6) 5,29 (1) 5,312 (25) 5,270 (2) Rejected by Chauvenet’s criterion Mean  2 /N-1 (critical) LWM5,2474 (5)3,32 NRM5,2474 (5)2,37 (95%) RT5,2474 (5) Recommended5,2474 (5)Includes the most precise value T 1/2 (mean) = 5,243 (1) d (1995RA12, from 1975MEZK)  = 0,08%  = 0,07% T 1/2 (mean) = 5,244 (7) d (Lagoutine et al., 1982)

133 Xe Relative gamma emission probabilities 6  -rays emitted in the decay of 133 Xe Energy keV  2,1 (Cs) 79,6142 (12)  1,0 (Cs) 80,9979 (11)  2,0 (Cs) 160,6120 (16)  3,2 (Cs) 223,2368 (18)  3,1 (Cs) 302,8508 (5)  3,0 (Cs) 383,8485 (12)

133 Xe Relative gamma emission probabilities Evaluation: The group I  79,6 +I  81 was considered as the reference line. I  79,6 was deduced using the ratio I  79,6 /I  160,6 from 133 Ba decay evaluation (Chechev and Kuzmenko, 2004): I  160,6 and I  223 averaged from 1968AL16 and 1995MA05. I  303 averaged from 1969ER04, 1968AL16 and 1995MA05.

Experimental values for the ratio I  384 /I  303 : Reference I  384 /I  PL550,50 (11) 1959JH170,512 (13) 1961ER0410,504 (88) 1968AL160,458 (20) 1992MA050,467 (27) LWM0,492  2 /N-1 (crit.) 2,37 Internal uncertainty0,010 External uncertainty0,012 Recommended0,492 (12) 133 Xe Relative gamma emission probabilities I  384 deduced from the 303 keV  -ray emission probability and the averaged I  384 /I  303 ratio :

133 Xe Relative gamma emission probabilities Reference  79,6  81  161  223  303  PL ,0100, JH ,4-0,0840, ER040,8 (1)1000,109 (10)0,0004 ( )0,0123 (12)0,0062 (9) 1968AL ,6 (7) 98,2 (59) 0,174 (9)0, (613)0,0135 (4)0,00618 (19) 1992MA051000,242 (25)0,00044 (18)0,0193 (7)0, (41) Weighted average 0,1820,000460,0164  2 /N-1 (crit.) 6,556,66,4 Internal uncertainty 0,0080,000170,0005 External uncertainty 0,0220,000060,0029 Recommended0,76 (9)99,24 (9)0,182 (22)0,00046 (17)0,0164 (29)0,0081 (14)

133 Xe Normalization Normalization factor was deduced from the decay scheme considering no direct feeding to the g.s. ICCs from BrIcc computer code (2002BA85). Associated uncertainties are 1,4%. Checked with GABS: NR = 0,373 (4)

133 Xe Absolute gamma emission probabilities Energy keV Photons per 100 disintegrations  2,1 (Cs) 79,6142 (12)0,28 (3)  1,0 (Cs) 80,9979 (11)37,0 (3)  2,0 (Cs) 160,6120 (16)0,068 (8)  3,2 (Cs) 223,2368 (18)0,00017 (6)  3,1 (Cs) 302,8508 (5)0,0061 (11)  3,0 (Cs) 383,8485 (12)0,0030(5) E  and uncertainties from 2000HE14. Absolute  -ray probabilities uncertainties calculated from 1986BR21.

133 Xe Gamma transitions and multipolarites Gamma-ray transition probabilities deduced from %I  and the adopted ICC. Multipolarities: evaluated by 1977KR13 from experimental  angular correlation data.   80 from 1995RA12 from  (exp), penetration parameter (M1)= 4(4).  -ray energy  Multipolarity 79,6142 (12)0,124 (15)M1+1,54%E2 80,9979 (11)-0,151 (2)M1+2,28%E2 160,6120 (16)+0,96 (5)M1+92,2%E2 223,2368 (18)-0,114 (14)M1+1,3%E2 302,8508 (5)+0,022 (20)M1+0,05%E2 383,8485 (12) E2

133 Xe Beta transitions  energies deduced from the Q value and the level energies in 133 Cs, the later deduce from  -ray energies (2000HE14). The adopted level energies values were checked with GTOL computer code. All  -transition are allowed. Log ft values were obtained with LOGFT code. %  -probabilities were deduced from  -ray transition intensity balance at each level. Associated uncertainties were obtained using reference 1988BR07. Energy keV Probability × 100 Naturelg ft  - 0,3 43,6 (24) 0,0097 (12)Allowed6,82  - 0,2 266,8 (24) 0,87 (8)Allowed7,31  - 0,1 346,4 (24)99,12 (8)Allowed5,62

133 Xe Atomic data and secondary emissions Atomic data from 1996SC06. X-ray and Auger electron emission probabilities from EMISSION code. Results were checked with RADLST code. Differences < 1%. Average energy (keV) TypeIntensity (%) EmissionRadlst 4,29XLXL 5,79 (11) 5,83 (18) 30,625XK2XK2 13,54 (24)13,6 (5) 30,973XK1XK1 25,0 (5)25,0 (9) 35,00XKXK 9,09 (16) 9,1 (3) 3,55Auger-L49,9 (3)49,9 (15) 25,50Auger-K 5,64 (24) 5,63 (19)

Comparison with previous evaluations Lagoutine et al. (1982)1995Ra12This evaluation Half-life 1974CA27, 1975HO18, 1975WO MEZK 1950MA15, 1968AL16, 1974FOZY, 1974CA27, 1975WO10, 1975HO18, 2002UN02 EE 1968AL16, 1981HE15, Imbert et al., LMRI Ba e.c. decay2000HE14 II 1961ER04, 1974CA27 (no uncert.), 1977SC31( 133 Ba), Imbert et al., LMRI LOZV (Priv. Comm.) 1958PL55, 1959JH17, 1961ER04, 1968AL16, 1992MA05 EE 1961ER04 Q value and level energy (GTOL) Q 1993AU AU03

133 Xe m decay scheme

133 Xe m Half-life measurements ReferenceValue (days)Comments 1975HO FOZY 1968AL ER BE11 2,19 (5) 2,188 (8) 2,191 (29) 2,26 (2) 2,30 (8) Mean  2 /N-1 (critical) LWM2,198 (13)3,32 NRM2,200 (11)2,37 (95%) RT2,191 (8) Adopted value2,198 (13) T 1/2 (mean) = 2,188 (22) (Lagoutine et al., 1982)  = 0,4%  = 0,5% T 1/2 (mean) = 2,19 (1) (1995RA12)

133 Xe m isomeric transition (1) Different experimental values for the  -ray transition energy: ReferenceValue (keV) 1976ME16233,221 (15) 1972AC02233,2 (4) 1952BE55232,8 (3) 1951BE11232,8 (4)  2 /N-1 (crit.) 2,60 LWM233,219 (15) NRM233,219 (15) RT233,11 (12) Adopted value233,219 (15)

133 Xe m isomeric transition (2) ICCs from BrIcc computer code (2002BA85). %I  = 100 / (1 +  T ) = 100 / [1 + 8,84 (13)] = 10,16 (13) %. P  +ce = 100 % and %Pc e = 89,84 (13) % The  k and  L+M+… experimental values together with the theoretical ones are shown in the table: Reference KK  L+M BE554,4 (14)1,9 (6 1968AL167,68 (25)3,8 (3) 1968HA526,37 (9)2,51 (5) 1972AC027,4 (14)2,9 (6) 1978RO226,32 (9)2,69 (4) 2002BA856,24 (9)2,59 (3) 2008PE046,5 (9)2,9 (4)

Atomic data from 1996SC06. X-ray and Auger electron emission probabilities from EMISSION code. Results were checked with RADLST code. Differences < 0,6%. 133 Xe m Atomic data Average energy (keV) TypeIntensity (%) EmissionRadlst 4,110XLXL 7,6 (4) 7,60 (22) 29,458 (10)XK2XK2 16,0 (4)16,0 (6) 29,779 (10)XK1XK1 29,7 (6) 29,7 (11) 33,60XKXK 10,64 (24)10,6 (4) 3,43Auger-L 70,4 (10) 70,3 (20) 24,60Auger-K 7,1 (4) 7,1 (3)

Comparison with previous evaluations Lagoutine et al. (1982) 1995Ra12This evaluation Half-life 1974FOZY, 1974CA27, 1975HO ER04, 1968AL16, 1974FOZY, 1975HO BE11, 1961ER04, 1968AL16, 1974FOZY, 1975HO18 EE 1976ME BE51, 1952BE55, 1972AC02,1976ME16 ICC 1968HA521978RO222002BA85 Q 1993AU AU03

133 I decay scheme Ensdat file 11  ’s 47  ’s

133 I Half-life measurements ReferenceValue (h)Comments 1968RE EI AN WA KA28 20,9 (1) 20,8 (2) 20,3 (3) 20,9 (3) 20,8 (2) Rejected by Chauvenet’s criterion Mean  2 /N-1 (crit.) LWM20,87 (8)3,78 NRM20,87 (8) 2,60 (95%) RT20,87 (8) Recommended20,87 (8)  = 0,3% T 1/2 (mean) = 20,8 (1) h (1995RA12)

133 I Relative gamma emission probabilities Values are from 1976ME16. A 2% was increased in the uncertainty to account for uncertainty calibration as cited in this reference. Other experimental values: 1974KO26, but not used because detailed information about detector calibration, experimental conditions, sample preparation, calculation and uncertainties estimations is absent.

133 I Normalization Normalization factor was deduced from the decay scheme considering no direct feeding to the g.s. ICCs from BrIcc computer code (2002BA85). P  +ce (233keV) from 1976ME16. Checked with GABS: NR = 0,0863 (16)

133 I Gamma transitions and multipolarites Gamma-ray transition probabilities deduced from %I  and the adopted ICC. No experimental measurements of conversion coefficients (except for the 233-keV line) have been found in the bibliography. Multipolarities: from 1977KR13 or from 1974KO26.

133 I Beta transitions  energies deduced from the Q value and the level energies in 133 Xe. Checked with GTOL. %  -probabilities from  -ray transition intensity balance at each level. Associated uncertainties were obtained using 1988BR07. Log ft from LOGFT code. Beta TransitionAdopted (%)1966EI01 (%)1971SA09 (%)1976ME16 (%)  0,13 0,414 (15)0,5 0,42  0,12 1,25 (4)3,51,11,26  0,11 0,397 (12)0,40,30,4  0,10 3,75 (7)3,72,93,68  0,9 3,12 (6)3,33,23,16  0,8 0,58 (5)0,5 0,62  0,7 0,026 (18)---  0,6 4,16 (13)2,33,54,1  0,5 1,81 (6)-2,31,81  0,3 83,44 (21)85,483,283,5  0,1 1,07 (6)1,4 1,07

133 I Atomic data and secondary emissions Atomic data from 1996SC06. X-ray and Auger electron emission probabilities from EMISSION code. Results were checked with RADLST. Differences < 0,6%. Average energy (keV) TypeIntensity (%) EmissionRadlst 4,11XLXL 0,0653 (13) 0,0656 (18) 29,458 (10)XK2XK2 0,163 (4) 0,163 (7) 29,779 (10)XK1XK1 0,303 (6) 0,303 (13) 33,6XKXK 0,1084 (23) 0,109 (5) 3,430Auger-L 0,607 (4) 0,607 (22) 24,60Auger-K 0,072 (4) 0,072 (3)

Comparison with previous evaluations 1995Ra12This evaluation Half-life 1953KA28, 1955WA35, 1965ANo5, 1966EI01, 1968RE04 Same references but 20,87(8) h instead of 20,8 (1)h EE 1976ME161976ME16, 2000HE14 II 1976ME16 EE 1966EI01 Q value and level energy (GTOL) Q 1993AU052003AU03

CONCLUSIONS New precise values for 133 Xe, 133 Xe m and 133 I half-lives. 133 Xe: I  from 1992MA05 values not were considered in previous evaluations. Recalculated %I  using interpolated ICC from 2002BA85. Recent E  from 2000HE14. Recalculated E  and %  New measurements of the half-lives and I  are highly recommended.

Next evaluations 135m Xe, already finished (submitted for revision) 22 Na 59 Ni 94 Nb Thanks for your attention!

Bibliography I 1950MA01Macnamara, J.; Collins, C.B.; Thode, H.G. Phys. Rev. 78 (1950) BE11Bergström, I. Phys. Rev. 81 (1951) BE55Bergström, I. Ark. Fysik 5 (1952) GR07Graham, R.L.; Bell, R.E. Canadian J. Phys. 31 (1953) KA28Katcoff, S.; Rubinson, W. Phys. Rev 91(1953) BE36Bergström, I.; Thulin, S.; Wapstra, A.H.; Aström, B. Ark. Fysik 7 (1954) WA35Wahl, A. Phys. Rev. 99 (1955) HO97Holm, G. Ryde, H. Ark. Fysik 15 (1959) EI01Eichler, E. ; Chase, J.W.; Johnson, N.R.; O’Kelley, G.D. Bull. Am. Phys. Soc 5 (1960) ER04Erman, P.; Sujkowsky, Z. Ark. Fysik, 20 (1961) AN05Anderson, G.; Rudstam, G.; Sörensen, G. Ark. Fysik. 28 (1965) EI01Eichler, E. ; Chase, J.W.; Johnson, N.R.; O’Kelley, G.D. Phys. Rev. 146 (1966) TH09Thun, J.E.; Töknkvist, S.; Nielsen, K.B.; Snellman, H.; Falk, F.; Mocoroa, A. Nucl. Phys. 88 (1966) AL16Alexander, P.; Lau, J.P. Nucl. Phys. A121 (1968) HA52Hager, R.S., Seltzer, E.C. Nucl. Data A4 (1968) RE04Reynolds, S.A.; Emery, J.F.; Wyatt, E.I. Nucl. Sci. Eng. 32 (1968) SA09Saxena, R.N.; Sharma, H.D. Nucl. Phys. A171 (1971) AC02Achterberg, E.; Iglesias, F.C.; Jech, A.E. Moragues, J.A.; Otero, D.; Pérez, M.L.; Proto, A.N.; Rossi, J.J.; Scheuer, W.; Suárez, J.F. Phys. Rev. C5 (1972) EM01Emery, J.F.; Reynolds, S.A.; Wyatt, E.I. Nucl. Sci. Eng. 48 (1972) KR07Krane, K.S.; Olsen, C.E.; Steyert, W.A. Phys. Rev. C5 (1972) CA27Cavallo, L.M.; Schima, F.J.; Unterweger, M.P. Phys. Rev. C10 (1974) FOZYFontanilla, J.; Prindle, A.L.; Landrum, J.H.; Meyer, R.A. Bull. Amer. Phys. Soc. 19 (1974) 501

1975HO18Hoffman, D.C.; Barnes, J.W.; Dropesky, B.J.; Lawrence, F.O.; Kelly, G.M.; Ott, M.A. J. Inorg. Nucl. Chem. 37 (1975) MEZKMerrit, J.S.; Gibson, F.M. AECL-5032 (1975), p WO10Woods, M.J.; Goodier, I.W.; Lucas, Sylvia E.M. Int. J. Appl. Radiat. Isot. 26 (1975) ME16Meyer, R.A.; Momyer, F.F.; Henry, E.A.; Yaffe, R.P.; Walters, W.B. Phys. Rev. C14 (1976) KR13Krane, K.S. At. Data Nucl. Data Tables 19 (1977) SC31Schötzig, U.; Debertin, K.; Walz, K.F. J. Appl. Radiat. Isot. 28 (1977) RO22Rosel, F., Fries, H.M., Alder, K. At. Data Nucl. Data Tables 21 (1978) 91 Imbert, L. Kadchi, A., Morel, J., N.T. LMRI HE15Helmer, R.G.; Caffrey, A.J.; Fehrke, R.C.; Greenwood, R.C. Nucl. Inst. Meth. 188 (1981) 671. Lagoutine, F. Coursol, N.; Legrand, J. Table de Radionucléides, CEA, ISBN: (1982). 1983LOZVLorentz, A., INDC (NDS)-145/GEI, LO08Lönnroth, T.; Kumpulainen, J.; Tuokko, C. Physica Scripta 27 (1983) SC34Schötzig, U. and Weiss, H.M. Instrum. Meth. A 252 (1986) RA17Raghavan, P. At. Data and Nucl. Data Tables 42 (1989) MA05Martin, R.H.; Keller, N.A. Int. J. Appl. Radiat. Isot. 43 (1992) UN01Unterweger, M.P.; Hoppes, D.D.; Schima, F.J. Nucl. Inst. Meth. A312 (1992) HEZZHelmer, R.G.; Van der Leun, C.; Van Assche P.H.M. Priv. Comm. 1995RA12Rab, S. Nucl. Data Sheets 75 (1995) SC06Scönfeld, E.; Janssen, H.. Nucl. Instrum. Meth. A 369 (1996) HE14Helmer, R.G.; van der Leun, C. Appl. Radiat. Isot. 52 (2000) BA85Band, I.M.; Trzhaskovskaya, M.B. Nestor, C.W. Jr. At. Data Nucl. Data Tables 81 (2002) UN02Unterweger, M.P. Nucl. Inst. Meth.A56 (2002) AU03Audi, G.; Wapstra, A.H.; Thibault, C. Nucl. Phys. A 729 (2003) 337 Bibliography II