Data Mining Data Warehouses.

Slides:



Advertisements
Similar presentations
April 30, Data Warehousing and OLAP Technology: An Overview  What is a data warehouse?  Data warehouse architecture  From data warehousing to.
Advertisements

Data Warehousing.
Data Warehousing Willem Visser RW334. Somebody is watching! Everybody seems to be recording your every move Loyalty cards Cookies – Facebook, Twitter,…
Introduction to Data Warehousing CPS Notes 6.
1 Lecture 09: OLAP
ICS 421 Spring 2010 Data Warehousing (1) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 3/18/20101Lipyeow.
The Role of Data Warehousing and OLAP Technologies CS 536 – Data Mining These slides are adapted from J. Han and M. Kamber’s book slides (
1 CIS *717.2 Data Warehouse Design Week 2 Dimensional Modeling Primer Data Warehouse Models OLAP Operations Instructor Carmela R. Balassiano Feb 5, Spring.
Data Warehousing & OLAP
Data Warehouses and OLAP
Data Warehousing Xintao Wu. Evolution of Database Technology (See Fig. 1.1) 1960s: Data collection, database creation, IMS and network DBMS 1970s: Relational.
Data Warehousing.
Dr. M. Sulaiman Khan Dept. of Computer Science University of Liverpool 2010 COMP207: Data Mining Data Warehousing COMP207: Data Mining.
1 Lecture 10: More OLAP - Dimensional modeling
© Tan,Steinbach, Kumar Introduction to Data Mining 8/05/ Data Warehouse and Data Cube Lecture Notes for Chapter 3 Introduction to Data Mining By.
Business Systems Intelligence: 3. Data Warehousing Dr. Brian Mac Namee (
Ch3 Data Warehouse part2 Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009.
1 Data Warehousing and OLAP. 2 Data Warehousing & OLAP Defined in many different ways, but not rigorously.  A decision support database that is maintained.
CS346: Advanced Databases
Ch3 Data Warehouse Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2010.
1 Data Warehouses C hapter 2. 2 Chapter 2 Outline Chapter 2 Outline – Introduction –Data Warehouses –Data Warehouse in Organisation – OLTP vs. OLAP –Why.
Dr. Bernard Chen Ph.D. University of Central Arkansas
8/20/ Data Warehousing and OLAP. 2 Data Warehousing & OLAP Defined in many different ways, but not rigorously. Defined in many different ways, but.
8/25/2015Data Mining: Concepts and Techniques 1 Data Mining: Concepts and Techniques — Chapter 3 — Jiawei Han Department of Computer Science University.
August 25, 2015Data Mining: Concepts and Techniques 1 Data Warehousing What is a data warehouse? A multi-dimensional data model Data warehouse architecture.
Data Warehousing and Decision Support courtesy of Jiawei Han, Larry Kerschberg, and etc. for some slides. Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY.
An overview of Data Warehousing and OLAP Technology
School of Management, HUST
Data warehouses and Online Analytical Processing.
Data warehousing and online analytical processing- Ref Chap 4) By Asst Prof. Muhammad Amir Alam.
Data Warehousing Xintao Wu. Can You Easily Answer These Questions? What are Personnel Services costs across all departments for all funding sources? What.
OLAP & DSS SUPPORT IN DATA WAREHOUSE By - Pooja Sinha Kaushalya Bakde.
Roadmap 1.What is the data warehouse, data mart 2.Multi-dimensional data modeling 3.Data warehouse design – schemas, indices 4.The Data Cube operator –
CISB594 – Business Intelligence
October 28, Data Warehouse Architecture Data Sources Operational DBs other sources Analysis Query Reports Data mining Front-End Tools OLAP Engine.
Dr. N. MamoulisAdvanced Database Technologies1 Topic 6: Data Warehousing & OLAP Defined in many different ways, but not rigorously. A decision support.
Ch3 Data Warehouse Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009.
CISB594 – Business Intelligence Data Warehousing Part I.
CISB594 – Business Intelligence Data Warehousing Part I.
Managing Data for DSS II. Managing Data for DS Data Warehouse Common characteristics : –Database designed to meet analytical tasks comprising of data.
CISB594 – Business Intelligence Data Warehousing Part I.
M. Sulaiman Khan Dept. of Computer Science University of Liverpool 2009 This is the full course notes, but not quite complete. You.
2016年1月21日星期四 2016年1月21日星期四 2016年1月21日星期四 Data Mining: Concepts and Techniques 1 Data Mining: Concepts and Techniques — Chapter 3 — Jiawei Han Department.
January 21, 2016Data Mining: Concepts and Techniques 1 Chapter 3: Data Warehousing and OLAP Technology: An Overview What is a data warehouse? A multi-dimensional.
Advanced Database Concepts
Datawarehousing and OLAP C.Eng 714 Spring
CPT-S Advanced Databases 1 Yinghui Wu EME 49 ADB (ln27)
June 12, 2016Data Mining: Concepts and Techniques 1 Data Mining: Concepts and Techniques — Chapter 3 — Jiawei Han Department of Computer Science University.
Data Warehouses and OLAP. Data Warehousing and OLAP Technology for Data Mining  What is a data warehouse?  A multi-dimensional data model  Data warehouse.
1 Chapter 4: Data Warehousing and On-line Analytical Processing Data Warehouse: Basic Concepts Data Warehouse Modeling: Data Cube and OLAP Data Warehouse.
Data Mining and Data Warehousing: Concepts and Techniques Conceptual Modeling of Data Warehouses Defining a Snowflake Schema in Data Mining Query Language.
Data Mining and Data Warehousing: Concepts and Techniques What is a Data Warehouse? Data Warehouse vs. other systems, OLTP vs. OLAP Conceptual Modeling.
Data Mining: Data Warehousing
Introduction to Data Warehousing
Information Management course
Data warehouse and OLAP
Information Management course
Data Warehouse—Subject‐Oriented
OLAP Concepts and Techniques
Data Warehouse.
Data Warehousing and OLAP Technology for Data Mining
Chapter 2: Data Warehousing and OLAP Technology for Data Mining
Data Warehouse and OLAP
Lecture 4: From Data Cubes to ML
Overview of Data Warehousing and OLAP
Data Warehousing and Decision Support Chapter 25
Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009
Data Mining: Concepts and Techniques
Data Warehouse and OLAP
Data Warehouse and OLAP Technology
Presentation transcript:

Data Mining Data Warehouses

Data Warehousing and OLAP Technology: An Overview What is a data warehouse? A multi-dimensional data model Data warehouse architecture From data warehousing to data mining

What is Data Warehouse? Defined in many different ways, but not rigorously. A decision support database that is maintained separately from the organization’s operational database Support information processing by providing a solid platform of consolidated, historical data for analysis. “A data warehouse is a subject-oriented, integrated, time- variant, and nonvolatile collection of data in support of management’s decision-making process.”—W. H. Inmon Data warehousing: The process of constructing and using data warehouses

Data Warehouse—Subject-Oriented Organized around major subjects, such as customer, product, sales Focusing on the modeling and analysis of data for decision makers, not on daily operations or transaction processing Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

Data Warehouse—Integrated Constructed by integrating multiple, heterogeneous data sources relational databases, flat files, on-line transaction records Data cleaning and data integration techniques are applied. Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources E.g., Hotel price: currency, tax, breakfast covered, etc. When data is moved to the warehouse, it is converted.

Data Warehouse—Time Variant The time horizon for the data warehouse is significantly longer than that of operational systems Operational database: current value data Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years) Every key structure in the data warehouse Contains an element of time, explicitly or implicitly But the key of operational data may or may not contain “time element”

Data Warehouse—Nonvolatile A physically separate store of data transformed from the operational environment Operational update of data does not occur in the data warehouse environment Does not require transaction processing, recovery, and concurrency control mechanisms Requires only two operations in data accessing: initial loading of data and access of data

Data Warehouse vs. Operational DBMS OLTP (on-line transaction processing) Major task of traditional relational DBMS Day-to-day operations: purchasing, inventory, banking, manufacturing, payroll, registration, accounting, etc. OLAP (on-line analytical processing) Major task of data warehouse system Data analysis and decision making Distinct features (OLTP vs. OLAP): User and system orientation: customer vs. market Data contents: current, detailed vs. historical, consolidated Database design: ER + application vs. star + subject View: current, local vs. evolutionary, integrated Access patterns: update vs. read-only but complex queries

OLTP vs. OLAP

Data Warehousing and OLAP Technology: An Overview What is a data warehouse? A multi-dimensional data model Data warehouse architecture From data warehousing to data mining

From Tables and Spreadsheets to Data Cubes A data warehouse is based on a multidimensional data model which views data in the form of a data cube A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions Dimension tables, such as item (item_name, brand, type), or time(day, week, month, quarter, year) Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables

Conceptual Modeling of Data Warehouses Modeling data warehouses: dimensions & measures Star schema: A fact table in the middle connected to a set of dimension tables Snowflake schema: A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake

Example of Star Schema item branch time Sales Fact Table time_key day day_of_the_week month quarter year time item_key item_name brand type supplier_type item Sales Fact Table time_key item_key branch_key branch_key branch_name branch_type branch location_key street city state_or_province country location location_key units_sold dollars_sold avg_sales Measures

Example of Star Schema

Example of Snowflake Schema time_key day day_of_the_week month quarter year time item_key item_name brand type supplier_key item supplier_key supplier_type supplier Sales Fact Table time_key item_key branch_key location_key street city_key location branch_key branch_name branch_type branch location_key units_sold city_key city state_or_province country dollars_sold avg_sales Measures

Example of Snowflake Schema

Data Cubes Allows data to be modeled and viewed in multiple dimensions Another representation like star schema Dimensions are entities which you want to keep records Time, item, branch, location… Each dimension has a table called dimension table

3-D Data Cube 4-D cubes can be visualized as a series of 3-D cubes Supplier 1 Supplier 2 Supplier 3

Cuboid A data cube is often referred as a cuboid Can generate a cubiod for all possible subsets of dimensions Provide different level of summarization N-D cube  base cuboid Lowest level of summary 0-D cube  apex cuboid Highest level of summary Summary over all dimensions

Cube: A Lattice of Cuboids all time item location supplier time,location time,supplier item,location item,supplier location,supplier time,item,supplier time,location,supplier item,location,supplier 0-D(apex) cuboid 1-D cuboids 2-D cuboids 3-D cuboids 4-D(base) cuboid time,item time,item,location time, item, location, supplier

Ex. Data Cube Gen Start with time-product (2-D) table that shows sale amounts TV PC VCR 1st Qtr 1000 850 350 2nd Qtr 1352 940 298 3rd Qtr 1450 658 314 4th Qtr 1500 965 365 USA

Ex. Data Cube Gen (3D) USA Canada Mexico TV PC VCR 1st Q 1000 850 350 2600 750 425 1300 2nd Q 1352 940 298 1752 860 236 1200 400 3rd Q 1450 658 314 1055 458 520 1150 555 510 4th Q 1500 965 365 1350 1065 390 900 USA Canada Mexico

A Sample Data Cube All, All, All Date Product Country Total annual sales of TV in U.S.A. Date Product Country All, All, All sum TV VCR PC 1Qtr 2Qtr 3Qtr 4Qtr U.S.A Canada Mexico

Cuboids Corresponding to the Cube all 0-D(apex) cuboid country product date 1-D cuboids product,date product,country date, country 2-D cuboids 3-D(base) cuboid product, date, country

Multidimensional Data Sales volume as a function of product, month, and region Dimensions: Product, Location, Time Hierarchical summarization paths Region Industry Region Year Category Country Quarter Product City Month Week Office Day Product Month

A Concept Hierarchy: Dimension (location) all all Europe ... North_America region Germany ... Spain Canada ... Mexico country Vancouver ... city Frankfurt ... Toronto L. Chan ... M. Wind office

Typical OLAP Operations Roll up (drill-up): summarize data by climbing up hierarchy or by dimension reduction Drill down (roll down): reverse of roll-up from higher level summary to lower level summary or detailed data, or introducing new dimensions Slice and dice: project and select Pivot (rotate): reorient the cube, visualization, 3D to series of 2D planes

Chapter 3: Data Warehousing and OLAP Technology: An Overview What is a data warehouse? A multi-dimensional data model Data warehouse architecture From data warehousing to data mining

Data Warehouse: A Multi-Tiered Architecture Operational DBs Other sources Monitor & Integrator OLAP Server Metadata Extract Transform Load Refresh Analysis Query Reports Data mining Serve Data Warehouse Data Marts Data Sources Data Storage OLAP Engine Front-End Tools

Warehouse Architecture Data Mart a subset of corporate-wide data that is of value to a specific groups of users. Its scope is confined to specific, selected groups, such as marketing data mart Meta data is the data defining warehouse objects. It stores: Description of the structure of the data warehouse schema, view, dimensions, hierarchies, data mart locations and contents Monitoring information warehouse usage statistics, error reports Algorithms used for summarization

Chapter 3: Data Warehousing and OLAP Technology: An Overview What is a data warehouse? A multi-dimensional data model Data warehouse architecture From data warehousing to data mining

Data Warehouse Usage Three kinds of data warehouse applications Information processing supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs Analytical processing multidimensional analysis of data warehouse data supports basic OLAP operations, slice-dice, drilling, pivoting Data mining knowledge discovery from hidden patterns supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools

Chapter 3: Data Warehousing and OLAP Technology: An Overview What is a data warehouse? A multi-dimensional data model Data warehouse architecture From data warehousing to data mining Summary

Summary: Data Warehouse and OLAP Technology Why data warehousing? A multi-dimensional model of a data warehouse Star schema, snowflake schema A data cube consists of dimensions & measures OLAP operations: drilling, rolling, slicing, dicing and pivoting Data warehouse architecture