The different inactivation behaviors of E

Slides:



Advertisements
Similar presentations
Disinfection – Chapter 26
Advertisements

Lipid Peroxidation 1 st Year MBBS Lipid Peroxidation refers to the oxidative degradation of lipids.oxidativelipids It is the process in which.
Enzymes Honors Biology Chemical Reactions and Enzymes chemical reaction:
Slide 1: Powerpoint animation of reactive oxygen generation from the mitochondrial electron transport chain (ETC). 1 st mouse click: electron transport.
Detection of reactive oxygen and nitrogen species using leuco dyes (DCFH 2 and DHR) Marta Wrona, Mark Burkitt and Peter Wardman Gray Cancer Institute,
Oxidative/Reductive Taints Linda F. Bisson Department of Viticulture and Enology University of California, Davis.
Thermodynamic, kinetics and pathways of transformation reactions Reactions involving intermediates produced by radiation (2 hrs) Environmental processes.
Pulping and Bleaching PSE 476/Chem E 471
Pulping and Bleaching PSE 476/Chem E 471
BIOLOGICAL ROLE OF OXYGEN
5/21/2015Disinfection1 Disinfection: Microbiology and Chemistry J(Hans) van Leeuwen.
Introduction Different aspects of water treatment are considered the most urgent topics at the present and will influence our future life and Photocatalytic.
TPR and TPS Temperature Programmed Reduction (TPR)
METO 621 Lesson 24. The Troposphere In the Stratosphere we had high energy photons so that oxygen atoms and ozone dominated the chemistry. In the troposphere.
Pulping and Bleaching PSE 476: Lecture 191 Pulping and Bleaching PSE 476/Chem E 471 Lecture #19 Oxygen Bleaching Lecture #19 Oxygen Bleaching.
Affymetrix Latin Square Experiment One lot of 14 arrays were used for the study using spikes along with the background-- enriched RNA from DR153 (Ecoli)
Introduction Different aspects of water treatment are considered the most urgent topics at the present and will influence our future life. Photocatalytic.
Pulping and Bleaching PSE 476/Chem E 471
Oxidative Stress.
Environmental Bio-Systems, Inc. is an RGF Environmental Distributor Wastewater Treatment Technologies Bioremediation Coagulation/Floc Membrane Filtration.
OXIDATION PROCESSES IN DRINKING WATER TREATMENT
GROWTH OF MICROORGANISMS. Nutritional Classification Based upon energy and carbon sources Energy source- electron donors –Phototrophs (light nourishment)
Experts in Chem-Feed and Water Treatment Chlorine Chemistry.
SEAVURIA Seattle + Kenya (2012)
Introduction Different aspects of water treatment are considered the most urgent topics at the present and will influence our future life. Photocatalytic.
Oxidative Stress and Diabetes Jian Li Beijing Institute of Geriatrics Ministry of Health.
Chemical oxidation technologies have been used for many years to degrade a wide range of pollutants in wastewater and drinking water. Advanced chemical.
Sulfur Dioxide In Wine Has two properties: –Antimicrobial : Active form is Molecular SO 2 –Antioxidant: Molecular form of SO 2 is the reactive form at.
Photocatalytic Oxidation of Aqueous Cyanide Using TiO 2 and Surface-Modified TiO Jae-Hyun Kim  Ho-In Lee Seoul National University.
Metabolism of Reactive Oxygen Species in Peroxisomes: Rob P. Donaldson Department of Biological Sciences George Washington Univ.
Chemical Issues During Aging Linda F. Bisson Department of Viticulture and Enology University of California, Davis.
REACTIVE CHEMICALS. NATURE OF THE HAZARD GENERAL CATEGORIES: 1. REDOX REACTIONS 2. EXPLOSIVES 3. PYROPHORIC AND WATER REACTIVE.
Reaction Rates. Reaction Rate Activity H 2 O 2 + Yeast  ? 1.Create a before and after table on a piece of paper to record your observations. 2.Pour about.
In general… High-temperature minerals + water = weathering products + dissolved ions Hydration/hydrolysis reactions. Depend on pH – acid vs. alkaline.
The most important structural feature of an atom for determining behaviour is the number of electrons in the outer shell. A substance that has a full.
“Other” detoxication mechanisms P-glycoprotein: ATP-dependent carrier that removes molecules from cells Multidrug resistance associated protein MDR Multispecific.
Desorption mechanism of hydrogen isotope from metal oxides Contents 1.Background 2.Experimental system and Mechanism 3.Results and discussion 4.Conclusions.
The photo-electrochemical disinfection of water using a novel bubble column reactor P. A. Christensen.
صدق الله العظيم الروم ـ 54 Visible light and infra red RADIATION Non-ionizing radiation Ionizing radiation Particulate Alpha-, Beta-particles & Neutrons.
광촉매 반응의 메커니즘 연구 최 원 용 포 항 공 과 대 학 교 환 경 공 학 부
AdOxTM --a Kinetic Model for the Hydrogen Peroxide / UV Process
연세대학교 화학공학과 이 태 규 제 4 회 광촉매 연구회 2004 년 2 월 26 일 Comparison of Mercury Removal Efficiency from a Simulated Exhaust Gas by Several Types of TiO 2 under Various.
Need for pure water adsorption, sedimentation, filtration, chemical and membrane cost and further contaminate the atmosphere AOP Innovative water treatment.
Nafion layer-enhanced photosynthetic conversion of CO 2 into Hydrocarbons on TiO 2 nanoparticles Wooyul Kim et al., Energy Environ. Sci., 5, 2012, 6066.
METO 621 CHEM Lesson 4. Total Ozone Field March 11, 1990 Nimbus 7 TOMS (Hudson et al., 2003)
Fenton Family - Advanced Oxidation
Impact of Oxygen and Hydrogen Peroxide Treatments on Torrontes Aroma Profiles Linda F. Bisson Department of Viticulture and Enology University of California,
한국진공학회 제 45 회 하계학술대회 Tutorial 08/21/2013 한국화학연구원 최지나.
Mr. Quinn & Ms. Tom March 14, 2014 Aim: What influences the rate of a chemical reaction? Do Now: Of the variables we have learned about that affect rate.
CT Values Dan Lanteigne
Electrolysis.
Presentation by Greg Brown ( )
ACTIVITATEA ANTIMICROBIANA A NANOMATERIALELOR PE BAZA DE TiO2
Chemical oxidation E°b> E°a Reductant a Oxidant a Oxidant b
Purposes of Oxidation Removal of iron, manganese, sulfides
Electrolysis.
Properties of Water Notes
OH KINETICS IN A SHIELDED ATMOSPHERIC PRESSURE PLASMA JET
Jose A Villegas, A Grant Mauk, Rafael Vazquez-Duhalt 
Identifying MnVII-oxo Species during Electrochemical Water Oxidation by Manganese Oxide  Biaobiao Zhang, Quentin Daniel, Lizhou Fan, Tianqi Liu, Qijun.
Volume 36, Issue 5, Pages (December 2009)
Volume 23, Issue 3, Pages (March 2016)
Volume 5, Issue 3, Pages (March 2019)
Production of reactive oxygen species.
Chemistry I Objectives Chapter 19
S. pneumoniae GapA is sensitive to oxygen and H2O2 exposure.
1.5c Learning Outcomes carry out an experiment to demonstrate the displacement reactions of metals (Zn with Cu2+, Mg with Cu2+) explain what happens at.
Atmospheric oxygen-derived reactive oxygen species.
Titanium Dioxide Sensitized with Porphyrin Dye as a Photocatalyst for the Degradation of Water Pollutants Kevin Reyes, A.S. & Ivana Jovanovic, Ph.D. Department.
Fig. 2 NAD+-sensitized reduction of O2and oxidation of H2O.
Presentation transcript:

The different inactivation behaviors of E The different inactivation behaviors of E. coli and MS-2 phage by Photocatalytic TiO2 reaction 윤 제 용 서울대학교 응용화학부

TiO2 광촉매 반응에서 미생물 불활성화에 작용하는 반응성 물질의 규명 윤 제 용 서울대학교 응용화학부

Photocatalytic TiO2 chemistry (1) Reactive Oxygen Species ( •OH, O2-•, H2O2) Generated on Illuminated TiO2 Particles O2- + H+  HO2 O2 OH2+ O- OH OH- (or H2O) •OH h ecb- hvb+ H2O2 e-/H+ x2 e- A A•- D D•+

Photocatalytic TiO2 chemistry (2) (1) cathodic process (2) (3) (4) (5) anodic process (6) (7) (8)

연구 배경 I TiO2 광촉매 반응에서 생성되는 ROS (Reactive Oxygen Species)가 미생물 불활성화에 미치는 메커니즘 연구 미비 Hydrogen Peroxide ( H2O2 ) ROS Hydroxyl Radical ( •OH ) Superoxide Radical ( O2-• ) (Maness et al. 1999)

연구 배경 II 미생물 불활성화 : surface-bound • OH vs free •OH의 역할 불확실 Free •OH in bulk phase Role of •OH Surface-bound •OH in surface phase

연구 배경 III TiO2 광촉매 반응에 의한 바이러스의 불활성화 연구 미비 - Inactivation of MS-2 phage (Sjogren and Sierka, 1994) - Inactivation of Qß phage (Lee et al., 1997)

연구 목적 미생물 불활성화에 관여하는 ROS (•OH, O2-•, H2O2) 파악 : E. coli (박테리아) 와 MS-2 phage (바이러스) •OH probe compound의 감소 패턴과 미생물의 불활성화와 비교

연구 방법 (1) - 광촉매 반응 조건 온도 : 6oC, 20oC, 33oC pH = 5.6, 7.1, 8.2 (phosphate buffer (10 mM)) TiO2 농도 (Degussa P-25) : 0.1 ~ 2 g/L 광원: - 16W BLB (Black Light Blue) lamp ( x 1~4) (300~400 nm), 3.1 ~ 7.9×10-6 Einstein L-1 s-1

연구 방법 (2) - •OH 농도의 결정 pCBA (para-chlorobenzoic acid) (2.43 μM) - •OH probe compound - Analysis: HPLC/UV detector

연구 방법 (3) - •OH scavenger Effect of Scavenger - MeOH (30mM) : scavenge all of •OH (surface-bound & free) and h+ (Sun & Pignettelo, 1995) - t-BuOH (30mM) : scavenge all of free •OH and some of surface-bound •OH (Sun & Pignettelo, 1995)

실험 방법 (4)- 모델 적용 I Microbial Inactivation Curves (1) (a) : Tailing off (b) : Exponential (a) : Tailing off (c) : Shoulder + Exponential Survival Ratio. Log (N/No) Contact Time (a) (b) (c)

실험 방법 (4)- 모델 적용 II Chick-Watson Model CT concept Limitation N : number of microorganisms, C : disinfectant concentration Limitation - shoulder, tailing off - decay of disinfectant residuals

실험 방법 (4)- 모델 적용 III CT concept is valid Delayed Chick-Watson Model CT concept is valid Effective to explain inactivation with shoulder

연구 방법 (5)- 미생물 1) E. coli (ATCC strain 8739) Spreading plate method 2) MS-2 (F-specific RNA bacteriophage, ATCC 15597) - Pour plate method - Host : E. coli C 3000 or E. coli Famp

연구 방법 (6)- 실험 장치 Thermostated container TiO2 powder Pyrex reactor O2 or N2 Sparging TiO2 powder Pyrex reactor (cutoff, ~300nm) Black light lamp (20W) X 1~4 Stirrer

결과 및 토의 Part 1. •OH이 미생물 불활성화(E. coli)에 미치는 영향 : E.coli (박테리아) & MS-2 phage (바이러스)

Part 1. •OH이 미생물 불활성화(E. coli)에 미치는 영향

1. TiO2 Concentration E. coli 불활성화 pCBA degradation 0.1 ~ 1.0 g/L : 농도가 높을 수록 빠른 미생물의 불활성화 1.0 ~ 2.0 g/L : 농도에 의한 차이 없음 pCBA와 미생물이 유사한 감소 패턴을 보임: •OH 농도와 상관성

2. 빛의 세기 the levels of E. coli inactivation and pCBA degradation 1.00 I (intensity) = 7.9×10-6 Einstein L-1 s-1 E. coli 불활성화 pCBA degradation t (min)* 240 180 0.5 0.75 1 * : 2 log removal the levels of E. coli inactivation and pCBA degradation increased with square-root dependence with an increase light intensity (R2=0.99).

3. pH 1) High pH : 2) Low pH : E. coli 불활성화 pCBA degradation 1) & 2)의 상호 작용에 의해 pH effect 나타나지 않음 ( 미생물 불활성화 & pCBA 감소)

4. 온도 TiO2 (•OH) 미생물 (화학 소독제) pCBA degradation E. coli 불활성화 온도 effect 온도가 높을 수록 빠른 미생물의 불활성화

5. OH 농도와 E. coli 불활성화의 상관관계 Delayed Chick Watson Model a C : [•OH]ss t : 2 log 제거 시간 : CT concept이 적용됨 •OH •OH이 E. coli의 불활성화를 일으키는 Major Oxidant 온도 증가에 따라 •OH과 미생물의 반응 속도 또한 빨라진다.

6. • OH CT evaluation (20 oC) • OH CT = 0.8 x 10-5 mg min /L 1 2 Log(N/N0) 3 4 5 0.3 0.6 0.9 1.2 1.5 ( x 10-5 ) • OH CT = 0.8 x 10-5 mg min /L

7. Comparison with chemical disinfectants Ozone Free chlorine Chlorine dioxide •OH CT (mg.min/L) 4.0x10-2 1.3x10-1 8.0x10-2 0.8x10-5 2 log removal •OH is 103 ~ 104 times more effective

Part 2. 미생물의 불활성화 메커니즘 E. coli & MS-2 phage

ROS 와 •OH의 역할(1) - E. coli •OH MeOH : scavenge all of •OH (surface-bound & free) and h+ •OH The inactivation of E. coli is related with not only •OH (75%) but also other ROS (25%)

Enhanced production of •OH increase the inactivation of E. coli ROS 와 •OH의 역할(2 )- E. coli 산소 effect with O2 O2 saturation no O2 No Sparging no O2 Enhanced production of •OH increase the inactivation of E. coli

Scavenger에 의한 영향 – E. coli t-BuOH : scavenge all of free •OH and some of surface-bound •OH pCBA degradation Surface •OH Free & surface •OH E. coli is mainly inactivated by surface •OH

ROS 와 •OH의 역할(3)– MS-2 phage MeOH : scavenge all of •OH (surface-bound & free) and h+ t-BuOH : scavenge all of free •OH and some of surface-bound •OH Inactivated by Only free •OH

Role of •OH (I), Fe2+ Aided, E. coli E.coli inactivation pCBA degradation Fe2+, no t-BuOH Fe2+, t-BuOH no Fe2+, no t-BuOH no Fe2+, t-BuOH Free •OH의 생성이 증가했음에도 미생물의 불활성화는 빨라지지 않았음.

Photocatalytic TiO2 chemistry (4) Effect of Fe2+ (9) (Free) (10) (11)

Role of •OH (II), Fe2+ Aided, MS-2 phage Enhancement of inactivation was observed as MS-2 was inactivated by free •OH confirm the role of ROS in inactivating MS-2 phage

결론 : • OH CT = 0.8 x 10-5 mg min /L (2 log E. coli removal ) 1. 광촉매 미생물의 불활성화에 관여하는 ROS의 종류가 E. coli와 MS-2에서 상이하다. E. coli : major: surface-bound •OH minor : free •OH, H2O2, O2-• MS-2 : Only free •OH in bulk phase 2. TIO2 광촉매 반응에서 미생물의 불활성화에 관여하는 ROS 중 •OH이 주요 물질이다. : • OH CT = 0.8 x 10-5 mg min /L (2 log E. coli removal )