Permutations and Combinations. Objectives:  apply fundamental counting principle  compute permutations  compute combinations  distinguish permutations.

Slides:



Advertisements
Similar presentations
Permutations and Combinations
Advertisements

Counting Principles The Fundamental Counting Principle: If one event can occur m ways and another can occur n ways, then the number of ways the events.
Statistics Review. Box-and-Whisker Plots The Parts of a Box and Whisker Plot Name the parts of a Box-and-Whisker Plot MedianUpper Quartile Lower.
How many possible outcomes can you make with the accessories?
___ ___ ___ ___ ___ ___ ___ ___ ___
1 Counting Rules. 2 The probability of a specific event or outcome is a fraction. In the numerator we have the number of ways the specific event can occur.
Chapter 2 Section 2.4 Permutations and Combinations.
Permutations and Combinations AII Objectives:  apply fundamental counting principle  compute permutations  compute combinations  distinguish.
Expected value a weighted average of all possible values where the weights are the probabilities of each outcome :
Warm Up Evaluate  4  3  2   6  5  4  3  2  Permutations and Combinations.
Permutations and Combinations. Random Things to Know.
P ERMUTATIONS AND C OMBINATIONS Homework: Permutation and Combinations WS.
Permutations and Combinations
Permutations and Combinations. Objectives:  apply fundamental counting principle  compute permutations  compute combinations  distinguish permutations.
Warm Up Evaluate  4  3  2   6  5  4  3  2 
Permutations, Combinations, and Counting Theory AII.12 The student will compute and distinguish between permutations and combinations and use technology.
Permutations and Combinations
PERMUTATIONS AND COMBINATIONS BOTH PERMUTATIONS AND COMBINATIONS USE A COUNTING METHOD CALLED FACTORIAL.
Permutations and Combinations Review: Counting Principle 1.) Carol has 4 skirts, 3 shirts, and 3 pairs of shoes. How many different outfits are possible?
Unit VI Discrete Structures Permutations and Combinations SE (Comp.Engg.)
Fundamental Counting Theorm. Fundamental Counting Principle Fundamental Counting Principle can be used determine the number of possible outcomes when.
Permutations, Combinations, and Counting Theory
Lesson 0.4 (Counting Techniques)
Counting Techniques Tree Diagram Multiplication Rule Permutations Combinations.
37. Permutations and Combinations. Fundamental Counting Principle Fundamental Counting Principle states that if an event has m possible outcomes and another.
MATH 2311 Section 2.1. Counting Techniques Combinatorics is the study of the number of ways a set of objects can be arranged, combined, or chosen; or.
Warm up How many possible pizzas could you make with 3 types of meats, 2 types of cheeses, and 2 types of sauces? 5 * 4 * 3 * 2 * 1 =
Discrete Math Section 15.3 Solve problems using permutations and combinations Read page Combinations and permutations.
Permutations and Combinations
Warm Up Evaluate  4  3  2   6  5  4  3  2 
Permutations and Combinations AII Objectives:  apply fundamental counting principle  compute permutations  compute combinations  distinguish.
Quiz: Draw the unit circle: Include: (1)All “nice” angles in degrees (2) All “nice” angles in radians (3) The (x, y) pairs for each point on the unit circle.
Permutations and Combinations. Fundamental Counting Principle Fundamental Counting Principle states that if an event has m possible outcomes and another.
13 Lesson 1 Let Me Count the Ways Fundamental Counting Principle, Permutations & Combinations CP Probability and Statistics FA 2014 S-ID.1S-CP.3S-CP.5.
Permutations and Combinations Review Plus a little Dry Run, Sorting and Code.
Permutations and Combinations
Chapter 10 Counting Methods.
Permutations and Combinations
Combinations.
Happy Pi Day! Find x. 15 If you still have x
BASIC PROBABILITY Probability – the chance of something (an event) happening # of successful outcomes # of possible outcomes All probability answers must.
Counting Techniuqes.
Discrete Math Section 15.3 Solve problems using permutations and combinations Read page Combinations and permutations.
Permutations and Combinations
Permutations and Combinations
Warm Up Permutations and Combinations Evaluate  4  3  2  1
Permutations and Combinations
Probability Warm Up page 12- write the question you have 10 mins to complete it. See coaching on page 85.
Permutations and Combinations
Lesson 11-1 Permutations and Combinations
Permutations and Combinations
Permutations and Combinations
Counting techniques Basic Counting Principles, Pigeonhole Principle, Permutations and Combinations.
Permutations and Combinations
First lecture fsalamri Faten alamri.
How many possible outcomes can you make with the accessories?
MATH 2311 Section 2.1.
Counting Principle.
Bellwork Practice Packet 10.3 B side #3.
Probability Warm Up page 12- write the question you have 10 mins to complete it. See coaching on page 85.
Day 2 - Combinations.
Permutations and Combinations
Standard DA-5.2 Objective: Apply permutations and combinations to find the number of possibilities of an outcome.
Permutations and Combinations
Fundamental Counting Theorm
Lecture 7: Permutations and Combinations
Permutations and Combinations
Permutations and Combinations
MATH 2311 Section 2.1.
Presentation transcript:

Permutations and Combinations

Objectives:  apply fundamental counting principle  compute permutations  compute combinations  distinguish permutations vs combinations

Fundamental Counting Principle Fundamental Counting Principle can be used determine the number of possible outcomes when there are two or more independent events. If there are m ways to make a first event and n ways to make a second event, then there are m * n possible outcomes for the two events together.

Fundamental Counting Principle Lets start with a simple example. A student is to roll a die and flip a coin. How many possible outcomes will there be? 1H 2H 3H 4H 5H 6H 1T 2T 3T 4T 5T 6T 12 outcomes 6*2 = 12 outcomes

Fundamental Counting Principle For a college interview, Robert has to choose what to wear from the following: 4 slacks, 3 shirts, 2 shoes and 5 ties. How many possible outfits does he have to choose from? 4*3*2*5 = 120 outfits

Permutations A Permutation is an arrangement of items in a particular order. Notice, ORDER MATTERS! To find the number of Permutations of n items, we can use the Fundamental Counting Principle or factorial notation.

Permutations n P r represents the number of permutations of n objects arranged r at a time. This formula can be used to find the possible arrangements

Factoral Notation The number of ways to arrange the letters ABC: ____ ____ ____ Number of choices for first blank ? 3 ____ ____ 3 2 ___ Number of choices for second blank? Number of choices for third blank? *2*1 = 6 3! = 3*2*1 = 6 ABC ACB BAC BCA CAB CBA

Permutations A combination lock will open when the right choice of three numbers (from 1 to 30, inclusive) is selected. How many different lock combinations are possible assuming no number is repeated? Practice: Answer Now

Permutations A combination lock will open when the right choice of three numbers (from 1 to 30, inclusive) is selected. How many different lock combinations are possible assuming no number is repeated? Practice:

Permutations From a club of 24 members, a President, Vice President, Secretary, Treasurer and Historian are to be elected. In how many ways can the offices be filled? Practice: Answer Now

Permutations From a club of 24 members, a President, Vice President, Secretary, Treasurer and Historian are to be elected. In how many ways can the offices be filled? Practice:

Combinations Combination is an arrangement of items in which order does not matter. ORDER DOES NOT MATTER! Since the order does not matter in combinations, there are fewer combinations than permutations. The combinations are a "subset" of the permutations.

n C r represents the number of combinations of n objects chosen r at a time. Combinations

To play a particular card game, each player is dealt five cards from a standard deck of 52 cards. How many different hands are possible? Practice: Answer Now

Combinations To play a particular card game, each player is dealt five cards from a standard deck of 52 cards. How many different hands are possible? Practice:

Combinations A student must answer 3 out of 5 essay questions on a test. In how many different ways can the student select the questions? Practice: Answer Now

Combinations A student must answer 3 out of 5 essay questions on a test. In how many different ways can the student select the questions? Practice:

Combinations A basketball team consists of two centers, five forwards, and four guards. In how many ways can the coach select a starting line up of one center, two forwards, and two guards? Practice: Answer Now

Combinations A basketball team consists of two centers, five forwards, and four guards. In how many ways can the coach select a starting line up of one center, two forwards, and two guards? Practice: Center: Forwards:Guards: Thus, the number of ways to select the starting line up is 2*10*6 = 120.

A band has 5 new songs and wants to put 3 of them on a demo CD. How many different arrangements are possible? That was a lot of fun, but the calculator can do all the work for you…….

A band has 5 new songs and wants to put 3 of them on a demo CD. How many different arrangements are possible? 5 math PRB nPr enter 3 5 total songsArranged in groups of 3 Here is how to do it in the calculator

Twenty people report for jury duty. How many different 12 person juries can be chosen?

20 total peoplegroups of math PRB nCr enter 12 enter Here is how to do it in the calculator