10-7: Tessellations T ESSELLATION : A tiled pattern formed by repeating figures to fill a plane without gaps or overlaps. Regular Tessellation: When a.

Slides:



Advertisements
Similar presentations
Student Support Services
Advertisements

DEFINITION: TILES AND TILING
Tessellations Warm Up Lesson Presentation Lesson Quiz
Tessellations Alexander Alvarez.
© T Madas.
10.3 Polygons, Perimeters, and Tessalatiolns.  Polygon- -Any closed shape in the plane formed by three or more line segments that intersect only at their.
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 10 Geometry.
Tessellations 5.9 Pre-Algebra.
Tessellations 12-6 Warm Up Lesson Presentation Lesson Quiz
Confidential 2 WARM UP 1.The following regular polygons tessellate. Determine how many of each polygon you need at each vertex. Squares and Octagons Determine.
CHAPTER 24 Polygons. Polygon Names A POLYGON is a shape made up of only STRAIGHT LINES.
Chapter 10 Polygons! lvillage.education.vic.gov.au/.../polygons.JPG.
Tessellations *Regular polygon: all sides are the same length (equilateral) and all angles have the same measure (equiangular)
7-9 Tessellations Course 3 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Chapter Congruence and Similarity with Transformations 13 Copyright © 2013, 2010, and 2007, Pearson Education, Inc.
Here are the eight semi-regular tessellations:
G Stevenson What Are Tessellations? Basically, a tessellation is a way to tile a floor (that goes on forever) with shapes so that there is no overlapping.
Tessellations A tessellation is the tiling of a plane using one or more geometric shapes. An important part of any tessellation is that there must be no.
10-8 Polygons and Tessellations
COMPOSITIONS OF TRANSFORMATIONS
Lesson 10-4: Tessellation
to summarize this presentation
TESSELLATIONS What’s a tessellation? Tessellations are a series of repeating patterns or designs that interlock. The positive and negative space work.
© T Madas. A pattern of shapes which fit together without leaving any gaps or overlapping A way of completely covering a plane with shapes which do not.
Tessellations sdsu edtec 4701 Tessellations Bill Milburn, EDTEC 470 Morse High, Room
A tessellation, or tiling, is a repeating pattern that completely covers a plane, without gaps or overlaps. A tessellation, or tiling, is a repeating.
Tessellations.
Tessellations. In nature and life, they appear often: Honeycombs... Mud flats... In games, like checkers..
Tessellations 1 G.10b Images from ygons/regular.1.html
5-9 Tessellations Warm Up Problem of the Day Lesson Presentation
Tessellations with Regular Polygons.  Many regular polygons or combinations of regular polygons appear in nature and architecture.  Floor Designs 
Polygons and Area (Chapter 10). Polygons (10.1) polygon = a closed figure convex polygon = a polygon such that no line containing a side goes through.
GEOMETRY HELP Identify the repeating figures and a transformation in the tessellation. A repeated combination of an octagon and one adjoining square will.
E12 Students will be expected to recognize, name, and represent figures that tessellate.
A tessellation (or tiling) is a special type of pattern that consists of geometric figures that fit without gaps or overlaps to cover the plane.
Chapter 9: Transformations 9.7 Tesselations. repeating pattern of figures that completely covers a plane without gaps or overlaps think: tile, wallpaper,
Tessellations.
Math Review Day 1 1.Solve the equation for the given variable. 2. Find the slope of a line through (0,0) and (-4,-4). 3. Compare and contrast parallel.
TESSELLATIONS A Tessellation (or Tiling) is a repeating pattern of figures that covers a plane without any gaps or overlaps.
Chapter 7 Section 7.4. Objectives Learn about tessellations of regular polygons. Classify and identify monohedral, regular, and semiregular tessellations.
Tessellations Kaylee Kennedy Phillips Geometry/Physics.
Lesson 10-4: Tessellation
Repeating shapes and patterns that completely cover a plane
2 pt 3 pt 4 pt 5pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2pt 3 pt 4pt 5 pt 1pt 2pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4pt 5 pt 1pt Vocab 1 Vocab 2 Transformations CompositionsMiscellaneous.
J.Byrne Types of Triangles pg 1  The sum of the angles in any triangle is 180°  Equilateral Triangle  3 sides and 3 angles are equal  Isosceles.
Chapter13-6 Similar and Congruent Figures
Tessellations 9-6 Warm Up Lesson Presentation Lesson Quiz
Tessellations.
What common points can we observe on these images? Do we often find this in architecture?
Tessellations A tessellation is made by reflecting, rotating or translating a shape. A shape will tessellate if it can be used to completely fill a space.
Polygons, Perimeters, and Tessellations
Non-Regular Tessellation
5-9 Tessellations Warm Up Problem of the Day Lesson Presentation
Investigation 12: Tessellation
Tessellations POD: What is the measure of each interior angle of each regular polygon? Equilateral triangle Pentagon Hexagon Octagon.
Worksheet Key Yes No 8) 7/13 9) 4 10) 1/3
Tessellations POD: What is the measure of each interior angle of each regular polygon? Equilateral triangle Pentagon Hexagon Octagon.
Lesson 10-4: Tessellation
All pupils understand and construct tessellations using polygons
All Change It Fits Tessellations To be able to:
Tessellations.
12-6 Tessellations Lesson Presentation Holt Geometry.
13 Chapter Congruence and Similarity with Transformations
Tessellations 12-6 Warm Up Lesson Presentation Lesson Quiz
Tessellations of the Plane
Tessellations Warm Up Lesson Presentation Lesson Quiz
Lesson 7-6 Tessellations.
Lesson: 10 – 7 Tessellations
Tessellations Warm Up Lesson Presentation Lesson Quiz
CHAPTER 10 Geometry.
Presentation transcript:

10-7: Tessellations T ESSELLATION : A tiled pattern formed by repeating figures to fill a plane without gaps or overlaps. Regular Tessellation: When a regular polygon is used to form a tessellation pattern. Semi-regular tessellation: When two or more regular polygons are used to make a tessellation.

10-7: Tessellations Example Identify the figures used to create each tessellation. Then identify the tessellation as regular, semi-regular, or neither. Equilateral Triangles Regular Regular octagons & squares Semi-regular Parallelograms neither

10-7: Tessellations Assignment Worksheet #10-7 Tomorrow: Chapter 10 Preview distributed