THE KINEMATICS OF 1803+784 8th EVN SYMPOSIUM 26.09.2006 N.A. Kudryavtseva 1, S. Britzen 1, J. Roland 2, A. Witzel 1, E. Ros 1, A. Zensus 1, A. Eckart 3.

Slides:



Advertisements
Similar presentations
Connection between the parsec-scale radio jet and γ-ray flare in the blazar Venkatessh Ramakrishnan Aalto University Metsähovi Radio Observatory,
Advertisements

Kinematic Studies of the IDV Quasar S. Bernhart T. P. Krichbaum L. Fuhrmann Max-Planck-Institut fϋr Radioastronomie, Bonn.
Gabriele Giovannini Dipartimento di Astronomia, Bologna University Istituto di Radioastronomia - INAF EVN observations of M87 as follow-up on a recent.
Multiwavelenth Observations Of Strong Flares From The Tev Blazar 1ES Reporter: 倪嘉阳 Arthor:H.Krawczynski, S.B. Hughes
Constraints on Blazar Jet Conditions During Gamma- Ray Flaring from Radiative Transfer Modeling M.F. Aller, P.A. Hughes, H.D. Aller, & T. Hovatta The γ-ray.
1 Recollimation Shock, Transverse Waves and the Whip in BL Lacertae M.H. Cohen Caltech Granada 13 vi 2013.
M87 - WalkerVSOP-2 Symposium, Sagamihara, Japan Dec IMAGING A JET BASE - PROSPECTS WITH M87 R. Craig Walker NRAO Collaborators: Chun Ly (UCLA - was.
A Polarization Study of the University of Michigan BL Lac Object Sample Askea O'Dowd 1, Denise Gabuzda 1, Margo Aller University College Cork 2 -
Circular Polarization from Blazars: Results from the UMRAO Program Margo Aller, Hugh Aller, & Philip Hughes University of Michigan CP images.
Kinematics of Jets of Gamma-Ray Blazars from VLBA Monitoring at 43 GHz Svetlana Jorstad Boston University, USA St.Petersburg State University, Russia VLBA.
Composite colliding winds (CWo - orbiting; CWc - concentric; CWb - binary) and Seaquist, Taylor and Button (STB) model of HM Sge (open circle - hot component;
The MOJAVE Program: Investigating Evolution in AGN Jets Collaborators : M. Cara, N. Cooper, S. Kuchibhotla, S. Nichols, A. Lankey, N. Mellott, K. O'Brien.
The multi-wavelength polarization VLBI structure of 3 BL Lacertae objects Vladislavs Bezrukovs, Dr. Denise Gabuzda EVN 8 th Symposium 26 – 29 September,
4/19/2017 7:18 PM Linear and circular radio and optical polarization studies as a probe of AGN physics I. Myserlis E. Angelakis (PhD advisor), L. Fuhrmann,
Direct imaging of AGN jets and black hole vicinity Tiziana Venturi Active Galactic Nuclei 9 Ferrara,
VSOP-2 Detection of Faraday screen? Inoue M., Asada K.*, and Nagai H. National Astronomical Obs. of Japan * Institute of Space and Astronautical Science.
An Exceptional Radio Flare in Markarian 421 Joseph L. Richards, Talvikki Hovatta, Matthew L. Lister, Anthony C. S. Readhead, Walter Max-Moerbeck, Tuomas.
ATCA monitoring of Sgr A* at 3 millimeter Juan Li Shanghai Astronomical Observatory 2009/10/22 Collaborators: Z.Q. Shen (Shao.), A. Miyazaki (NAOJ), L.
Statistical analysis of model-fitted inner-jets of the MOJAVE blazars Xiang Liu, Ligong Mi, et al. Xinjiang Astronomical Observatory (Former Urumqi Observatory),
The quasar PKS : Direct evidence for a changing orientation of the central engine. John Wardle (Brandeis), Dan Homan (NRAO), C. C. Cheung & Dave.
Kinematics of parsec-scale radio jet in 3C48 Tao An 1, In collaboration with X.Y.Hong 1, M.J.Hardcastle 2, T.Venturi 3, D.Worrall 2,T.J.Pearson 4, Z.-Q.Shen.
Imaging Compact Supermassive Binary Black Holes with VLBI G. B. Taylor (UNM), C. Rodriguez (UNM), R. T. Zavala (USNO) A. B. Peck (CfA), L. K. Pollack (UCSC),
S. Jorstad / Boston U., USA A. Marscher / Boston U., USA J. Stevens / Royal Observatory, Edinburgh, UK A. Stirling / Royal Observatory, Edinburgh, UK M.
Search for Binary Black Holes in Galactic Nuclei Hiroshi SUDOU (Gifu Univ., Japan) EAVN Workshop, Seoul, 2009 March 19.
Intrinsic structure and kinematics of the sub-parsec scale jet of M87
Kelvin-Helmholtz modes revealed by the transversal structure of the jet in Manuel Perucho Andrei P. Lobanov Max-Planck-Institut für Radioastronomie.
Gabriele Giovannini Dipartimento di Astronomia, Bologna University Istituto di Radioastronomia - INAF Low Luminosity Radio Loud AGNs In collaboration with.
I.Introduction  Recent evidence from Fermi and the VLBA has revealed a strong connection between ɣ -ray emission in AGNs and their parsec-scale radio.
3C120 R. Craig Walker National Radio Astronomy Observatory Socorro, NM Collaborators: J.M. Benson, S.C. Unwin, M.B. Lystrup, T.R.Hunter, G. Pilbratt, P.E.
Jet dynamics and stability Manel Perucho Universitat de València The innermost regions of relativistic jets and their magnetic fields Granada, June 2013.
S. Jorstad / Boston U., USA /St. Petersburg State U., Russia A.Marscher / Boston U., USA M. Lister / Purdue U., USA A. Stirling / U. of Manchester, Jodrell.
BL LAC OBJECTS Marco Bondi INAF-IRA, Bologna, Italy.
Probing the Inner Jet of the Quasar PKS 1510  089 with Multi-waveband Monitoring Alan Marscher Boston University Research Web Page:
The MOJAVE Program: Studying the Relativistic Kinematics of AGN Jets Jansky Postdoctoral Fellow National Radio Astronomy Observatory Matthew Lister.
Polarization of AGN Jets Dan Homan National Radio Astronomy Observatory.
Circular Polarisation and Helical B Fields in AGN Denise Gabuzda (University College Cork) Vasilii Vitrishchak (Moscow State) Mehreen Mahmud (UCC) Shane.
ABSTRACT April 2000 CMVA observations of the sources 3C273 and 3C279 resulted in the first VLBI total intensity and linear polarization images of any source.
From the Black Hole to the Telescope: Fundamental Physics of AGN Esko Valtaoja Tuorla Observatory, University of Turku, Finland Metsähovi Radio Observatory,
Gabriele Giovannini Marcello Giroletti Gregory B. Taylor Dipartimento di Astronomia, Bologna University Istituto di Radioastronomia, INAF Bologna Dept.
A Global 86 GHz VLBI Survey of Compact Radio Sources Sang-Sung Lee MPIfR In collaboration with A.P. Lobanov, T.P. Krichbaum, A. Witzel, J.A. Zensus (MPIfR,
Iván Agudo with the collaboration of: S.N. Molina, J. L. Gómez (IAA-CSIC) T. P. Krichbaum, A. Roy, U. Bach (MPIfR) I. Martí Vidal (Chalmers) B. Campbell.
Multi-Frequency Polarization Studies of AGN Jets Denise Gabuzda (University College Cork)
Quasi-Periodicity in the Parsec-Scale Jet of the Quasar 3C345 - A High Resolution Study using VSOP and VLBA - In collaboration with: J.A. Zensus A. Witzel.
AGN: Linear and Circular Polarization
Dependence of the Integrated Faraday Rotations on Total Flux Density in Radio Sources Chen Y.J, Shen Z.-Q.
On the nature of High Frequency Peaker radio sources Monica Orienti Girdwood, 22/05/2007 Monica Orienti – Extragalactic Jets (INAF – IRA, Bologna) Daniele.
The Nature of Microvariability in Blazar Gopal Bhatta Department of Physics Florida International University.
Mapping Magnetic Field Profiles Along AGN Jets Using Multi-Wavelength VLBI Data Mark McCann, Denise Gabuzda Department of Physics, University College Cork,
Analysis of strong outbursts in selected blazars. Pyatunina T.B., Kudryavtseva N.A., Gabuzda D.C., Jorstad S.G., Aller M.F., Aller H.D., Terasranta H.
Exploring an evidence of supermassive black hole binaries in AGN with MAXI Naoki Isobe (RIKEN, ) and the MAXI
The jet of the LLAGN of M81: Evidence of Precession Antxon Alberdi Instituto de Astrofísica de Andalucía (IAA-CSIC) Iván Martí-Vidal (ALMA Nordic Node;
Gabuzda, Murray & Cronin astro-ph/
Is the Inner Radio Jet of BL Lac Precessing? R. L. Mutel University of Iowa Astrophysics Seminar 17 September 2003.
Long-term variability behaviour of AGN The X Finnish-Russian Radioastronomy Symposium Orilampi, 1-5 September, 2008 Talvikki Hovatta Metsähovi Radio Observatory.
The MOJAVE Program: Investigating Relativistic Jets in AGN Collaborators : M. Cara, N. Cooper, S. Kuchibhotla (Purdue) A. Lankey, N. Mellott, K. O'Brien.
Hydrodynamics of Small- Scale Jets: Observational aspects Esko Valtaoja Tuorla Observatory, University of Turku, Finland Metsähovi Radio Observatory, Helsinki.
1 ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) Netherlands Institute for Radio Astronomy Astronomy at ASTRON George Heald.
Evidence from AGN for Binary Black Holes
Radio Loud and Radio Quiet AGN
Key future observations for EVN:
VLBA Observations of Blazars
On behalf of the Radio-Agile AGN WG
Tackling the Disk/Jet Connection in AGN: Timing Analysis Methods and
Frequency-dependent core shift
Radio-Optical Study of Double-Peaked AGNs: 3C 390.3
X-Raying the MOJAVE Sample of Compact Extragalactic Radio Jets
Flare-Associated Oscillations Observed with NoRH
Radio Observations of Nearby HST BL Lacs
Shane O’Sullivan University College Cork
Compact radio jets and nuclear regions in galaxies
Presentation transcript:

THE KINEMATICS OF th EVN SYMPOSIUM N.A. Kudryavtseva 1, S. Britzen 1, J. Roland 2, A. Witzel 1, E. Ros 1, A. Zensus 1, A. Eckart 3 1 MPIfR Bonn, 2 Institut d’Astrophysique, Paris, 3 I. Physikalisches Institut Universität zu Köln

Outline An Overview of enigmatic properties of the blazar Jet Kinematics in – possible rotating helical jet Different explanations for jet precession

Introduction BL Lac source z = 0.68 (Lawrence, 1987) Has quasi-periodical light curves Jet bending Misalignment between pc- and kpc- scales ~ 4 yrs Kelly et al., 2003 University of Michigan Radio Observatory Monitoring; Aller et al., 1996

Pc-Kpc scales Mas scale 10 mas scale Arcsec scale e.g.: Gabuzda et al.1992; Witzel et al.1988; Britzen et al.1999; Strom & Biermann 1991; Kollgaard et al.1992 Britzen et al., 2005

Introduction Evidence for a helical jet structure (Britzen et al., 2005) Indications for a helical magnetic field (Gabuzda et al. 1994; Gabuzda & Cawthorne 1996; Gabuzda et al. 2003) Evidence for a helical jet structure (Britzen et al., 2005) Indications for a helical magnetic field (Gabuzda et al. 1994; Gabuzda & Cawthorne 1996; Gabuzda et al. 2003)

VLBI Observations DATA 8 GHz 43 GHz 5 GHz 1.6 GHz 15 GHz 2.3 GHz Marcaide et al Kellermann et al Perez-Torres et al Ros et al. 2000, 2001 Guirado et al Britzen et al., 2005 Gurvits et al. priv. comm. 23 observational epochs From 1993 to 2006 Plus 52 epochs from literature 75 epochs of observations Plus 52 epochs from literature 75 epochs of observations Fey et al. 1996, Lobanov et al. 2000, Lister et al. 2001, Ros et al. 2001, Tateyama et al. 2002

Results Set of oscillating jet components Core separation is in the certain area Position angle changes with time C4C2Ca C1 C6

Results , 15 GHz, Ca

Correlation of parameters For the inner components C0, C1, Ca and C2 we see correlation between parameters at 8 and 15 GHz Total flux density light curve, 8 GHzComponent C1’s parameters, 8 GHz

Position angle changes 8 GHz Δ p.a.=p.a.(max)–p.a. (min)

Position angle changes Flux density flares Peaks in p.a. spread Period in Position angle spread: 4.0 years Period in coordinates of components: 7.1 years Period in total flux density light curves: 3.9 years Kelly et al.2003 Total flux [Jy] 1990 Time [yrs]

Jet Rotation

Jet Rotation Presence of oscillating jet components Cyclical changes in the jet shape Jet rotation with the Period of ~ 7 yrs Speed ~18°/yr

Possible explanations Precession of the accretion disk  could be driven by a close massive object, e.g. Black Hole Fluid-dynamical instabilities in the interface between the jet material and the surrounding medium

Summary The source has a set of quasi- stationary jet components with the constant core separation and variable position angle The jet structure of can be explained with a rotating jet with a period of ~7 years

Jet Kinematics Introduction We are interested in investigation of the phenomena of jet wiggling and precession Investigation of possible reasons for jet precession such as binary black hole model and jet instabilities MOJAVE sample, Lister & Homan 2005 UMRAO, Aller et al., 1985 Michigan monitoring

Stationary Components 15 GHz 8 GHz

Stationary Components 5 GHz 8 GHz Literature data Fey et al. 1996, Lister et al. 2001, Tateyama et al. 2002, Ros et al. 2001, Lobanov et al. 2000

Jet Rotation Quasi-stationary jet components C1 and Ca show loops in the sky

Position angle changes 15 GHz 8 GHz

Speed of components + Correlations between position angle changes and the light curve Geometrical effect? Speed V app /c

Position angle changes Period in Position angle spread: 4.0 years Period in total flux density light curves: 2.0 and 3.9 years Kelly et al.2003 Period in coordinates of components: 7.1 years