THE KINEMATICS OF th EVN SYMPOSIUM N.A. Kudryavtseva 1, S. Britzen 1, J. Roland 2, A. Witzel 1, E. Ros 1, A. Zensus 1, A. Eckart 3 1 MPIfR Bonn, 2 Institut d’Astrophysique, Paris, 3 I. Physikalisches Institut Universität zu Köln
Outline An Overview of enigmatic properties of the blazar Jet Kinematics in – possible rotating helical jet Different explanations for jet precession
Introduction BL Lac source z = 0.68 (Lawrence, 1987) Has quasi-periodical light curves Jet bending Misalignment between pc- and kpc- scales ~ 4 yrs Kelly et al., 2003 University of Michigan Radio Observatory Monitoring; Aller et al., 1996
Pc-Kpc scales Mas scale 10 mas scale Arcsec scale e.g.: Gabuzda et al.1992; Witzel et al.1988; Britzen et al.1999; Strom & Biermann 1991; Kollgaard et al.1992 Britzen et al., 2005
Introduction Evidence for a helical jet structure (Britzen et al., 2005) Indications for a helical magnetic field (Gabuzda et al. 1994; Gabuzda & Cawthorne 1996; Gabuzda et al. 2003) Evidence for a helical jet structure (Britzen et al., 2005) Indications for a helical magnetic field (Gabuzda et al. 1994; Gabuzda & Cawthorne 1996; Gabuzda et al. 2003)
VLBI Observations DATA 8 GHz 43 GHz 5 GHz 1.6 GHz 15 GHz 2.3 GHz Marcaide et al Kellermann et al Perez-Torres et al Ros et al. 2000, 2001 Guirado et al Britzen et al., 2005 Gurvits et al. priv. comm. 23 observational epochs From 1993 to 2006 Plus 52 epochs from literature 75 epochs of observations Plus 52 epochs from literature 75 epochs of observations Fey et al. 1996, Lobanov et al. 2000, Lister et al. 2001, Ros et al. 2001, Tateyama et al. 2002
Results Set of oscillating jet components Core separation is in the certain area Position angle changes with time C4C2Ca C1 C6
Results , 15 GHz, Ca
Correlation of parameters For the inner components C0, C1, Ca and C2 we see correlation between parameters at 8 and 15 GHz Total flux density light curve, 8 GHzComponent C1’s parameters, 8 GHz
Position angle changes 8 GHz Δ p.a.=p.a.(max)–p.a. (min)
Position angle changes Flux density flares Peaks in p.a. spread Period in Position angle spread: 4.0 years Period in coordinates of components: 7.1 years Period in total flux density light curves: 3.9 years Kelly et al.2003 Total flux [Jy] 1990 Time [yrs]
Jet Rotation
Jet Rotation Presence of oscillating jet components Cyclical changes in the jet shape Jet rotation with the Period of ~ 7 yrs Speed ~18°/yr
Possible explanations Precession of the accretion disk could be driven by a close massive object, e.g. Black Hole Fluid-dynamical instabilities in the interface between the jet material and the surrounding medium
Summary The source has a set of quasi- stationary jet components with the constant core separation and variable position angle The jet structure of can be explained with a rotating jet with a period of ~7 years
Jet Kinematics Introduction We are interested in investigation of the phenomena of jet wiggling and precession Investigation of possible reasons for jet precession such as binary black hole model and jet instabilities MOJAVE sample, Lister & Homan 2005 UMRAO, Aller et al., 1985 Michigan monitoring
Stationary Components 15 GHz 8 GHz
Stationary Components 5 GHz 8 GHz Literature data Fey et al. 1996, Lister et al. 2001, Tateyama et al. 2002, Ros et al. 2001, Lobanov et al. 2000
Jet Rotation Quasi-stationary jet components C1 and Ca show loops in the sky
Position angle changes 15 GHz 8 GHz
Speed of components + Correlations between position angle changes and the light curve Geometrical effect? Speed V app /c
Position angle changes Period in Position angle spread: 4.0 years Period in total flux density light curves: 2.0 and 3.9 years Kelly et al.2003 Period in coordinates of components: 7.1 years