Welcome to UW-Madison, the WNPRC, and O’Connor Lab! MHC Genotyping Workshop November 7 th – 11 th, 2011 Madison, Wisconsin.

Slides:



Advertisements
Similar presentations
Next-Generation Sequencing: Methodology and Application
Advertisements

Virus discovery-454 sequencing
Considerations for Analyzing Targeted NGS Data HLA
 Sequencing technology › Roche/454 GS-FLX (‘454’) › Illumina  Prokaryotic profiling › De novo genome sequencing › Metagenomics › SNP profiling › Species.
© 2010 LabKey Software Managing Next Generation Sequencing and Multiplexed Genotyping Data Using Open Source LabKey Server Adam Rauch
Next–generation DNA sequencing technologies – theory & practice
ANIMAL MODELS HIV Cure Research Training Curriculum The HIV CURE training curriculum is a collaborative project aimed at making HIV cure research science.
Bioinformatics Lectures at Rice
Introduction  Human leukocyte antigen (HLA) is the major histocompatibility complex (MHC) in humans  Group of genes ('superregion') on chromosome 6.
Next-generation sequencing
The 454 and Ion PGM at the Genomics Core Facility Dr. Deborah Grove, Director for Genetic Analysis Genomics Core Facility Huck Institutes of the Life Sciences.
Canadian Bioinformatics Workshops
Greg Phillips Veterinary Microbiology
HIV/AIDS as a Microcosm for the Study of Evolution.
Laboratory of Experimental Virology Virus Discovery 454 sequencing Michel de Vries
1 Characterization, Amplification, Expression Screening of libraries Amplification of DNA (PCR) Analysis of DNA (Sequencing) Chemical Synthesis of DNA.
What Can You Do With qPCR?
An Introduction to the HIV Problem Space Oakwood University: Faculty Quantitative Institute Aug. 10–12, 2009.
Next Generation DNA Sequencing Platforms: Evolving Tools for
Diabetes and Endocrinology Research Center The BCM Microarray Core Facility: Closing the Next Generation Gap Alina Raza 1, Mylinh Hoang 1, Gayan De Silva.
GENOME SEQUENCING. I. Genome sequencing The Sanger Method (1977) Denaturation +priming Polymerization.
Update on Next-Generation Sequencing
The impact of next-generation sequencing technology of genetics Elaine R. Mardis – 11 February Washington School of Medicine, Genome Sequencing Center.
Next Now-Generation Genomics: methods and applications for modern disease research Aaron J. Mackey, Ph.D. Center for Public Health.
GS Junior System – First Results
Sequencing Technologies and Applications at JGI
Finishing the Human Genome
The virochip (UCSF) is a spotted microarray. Hybridization of a clinical RNA (cDNA) sample can identify specific viral expression.
PCR and Diagnostics Unique sequences of nucleotides if detectable can be used as definitive diagnostic determinants NA hybridisation is the basis for rapid.
DNA Technology Chapter 20.
Introduction to next generation sequencing Rolf Sommer Kaas.
HLA Genotyping Data Generated by 454 Sequencing Cherie Holcomb, Ph.D. Roche Molecular Systems picture placeholder NGS Data Consortium October 8, 2012.
Biotechnology in Medicine Chapter 12.
Restriction Nucleases Cut at specific recognition sequence Fragments with same cohesive ends can be joined.
Module 1 Section 1.3 DNA Technology
Bioinformatics and Sequencing Relevant to SolCAP
Targeted next generation sequencing for population genomics and phylogenomics in Ambystomatid salamanders Eric M. O’Neill David W. Weisrock Photograph.
HLA Analysis and Next Generation Sequencing Henry Erlich, Ph.D. Cherie Holcomb, Ph.D. Roche Molecular Systems picture placeholder NGS and EFI, May 14,
Chromatin Immunoprecipitation DNA Sequencing (ChIP-seq)
Development and Application of SNP markers in Genome of shrimp (Fenneropenaeus chinensis) Jianyong Zhang Marine Biology.
Ad5 expressing Gag, Pol and Nef Immune responses in control of HIV replication non-human primates // SIV extrapolated to humans // HIV Prospects for.
Stratton Nature 45: 719, 2009 Evolution of DNA sequencing technologies to present day DNA SEQUENCING & ASSEMBLY.
How will new sequencing technologies enable the HMP? Elaine Mardis, Ph.D. Associate Professor of Genetics Co-Director, Genome Sequencing Center Washington.
HaloPlexHS Get to Know Your DNA. Every Single Fragment.
Molecular Biology Dr. Chaim Wachtel May 28, 2015.
Taqman Technology and Its Application to Epidemiology Yuko You, M.S., Ph.D. EPI 243, May 15 th, 2008.
Lecture 6. Functional Genomics: DNA microarrays and re-sequencing individual genomes by hybridization.
Genetic Cancer Susceptibility (GCS) Genomics in I4C James McKay.
Ultra-High Throughput DNA Sequencing on the 454/Roche GS-FLX
Polymerase Chain Reaction (PCR) Nahla Bakhamis. Multiple copies of specific DNA sequences; ‘Molecular Photocopying’
The International Consortium. The International HapMap Project.
Third Generation Sequencing. Today Illumina – Solexa sequencing technology 454 Life sciences – 454 sequencer Applied Biosystem – SOLiD system Tomorrow.
Human Genomics Higher Human Biology. Learning Intentions Explain what is meant by human genomics State that bioinformatics can be used to identify DNA.
Introduction to Illumina Sequencing
Christian Gabriel, Linz
16S rRNA Experimental Design
Validation of HLA Typing by NGS
Next generation sequencing
Cancer Genomics Core Lab
Implementation Insights
Introduction to GENDX HLA typing products
DNA Sequencing -sayed Mohammad Amin Nourion -A’Kia Buford
Li Zhang, Ph.D. Associate Professor Department of Medicine
ULTRASEQUENCING. Next Generation Sequencing: methods and applications.
Massively Parallel Sequencing: The Next Big Thing in Genetic Medicine
BF nd (Next) Generation Sequencing
Restriction Fragment Length Polymorphism (RFLP)
Sequence Analysis - RNA-Seq 2
Rapid Detection of HIV-1 subtype C Integrase resistance mutations by the Use of High-Resolution Melting Analysis Tendai Washaya BSc, Msc. Pre-PhD Student.
Presentation transcript:

Welcome to UW-Madison, the WNPRC, and O’Connor Lab! MHC Genotyping Workshop November 7 th – 11 th, 2011 Madison, Wisconsin

Introductions Trainers (WNPRC Genetics Service) – Roger Wiseman – Julie Karl – Simon Lank – Gabe Starrett – Francesca Norante Participants – Wendy Garnica – Mark Garthwaite – Julie Holister-Smith – Suzanne Queen – Premeela Rajakumar – Yuko Yuki

Schedule of Events Monday – Welcome and Overview Presentation – Begin bench work: cDNA synthesis & PCR (run #1) Tuesday – PCR product purification, quantification & pooling (run #1) – Begin emulsion PCR (run #1) – Begin bench work (run #2) Wednesday – Break & enrich DNA beads (run #1) – Run Roche/454 GS Junior instrument (run #1) – emPCR (run #2) Thursday – View run #1 results – Continue work on run #2 – Informatics presentation – Data analysis Friday – Run #2 results – Continue Data Analysis & Wrap-up

Overview of Presentation Our lab & research focus Evolution of DNA sequencing technology Discussion of Roche/454 technology & sample multiplexing MHC genotyping method overview – NHP immunogenetics – Genotyping strategy – Workflow Genotyping results

Welcome to Madison! WNPRC

Welcome to Madison!

The Wisconsin National Primate Research Center (WNPRC) Only federally funded National Primate Research Center in the Midwest Center holds ~1,100 rhesus macaques, 200 marmosets, and 100 cynomolgus macaques Research strengths: – Immunogenetics & Virology – Aging & Metabolism – Reproductive & Regenerative Medicine

The O’Connor Laboratory Genetics Services Members

The O’Connor Laboratory Genetics Services Members

The O’Connor Laboratory: Research NHP immunogenetics (MHC class I, class II, KIR) – Cynomolgus Macaque (Mauritian, Indonesian, SE Asian) – Rhesus Macaque (Indian & Chinese) – Japanese Macaque, Vervet, Sooty Mangaby SIV pathogenesis (immunology) and viral evolution Human immunogenetics (HLA) and HIV variation

The O’Connor Laboratory: Research NHP immunogenetics (MHC class I, class II, KIR) – Cynomolgus Macaque (Mauritian, Indonesian, SE Asian) – Rhesus Macaque (Indian & Chinese) – Japanese Macaque, Vervet, Sooty Mangaby SIV pathogenesis (immunology) and viral evolution Human immunogenetics (HLA) and HIV variation

Sequencing Technology is Changing Micro sequencing reactions – Pyrosequencing – Single molecule sequencing Higher throughput – Millions of sequences per day Lower cost – $10,000 human genome (original HGP = $3 billion)

Sequencing Technology: Overview 1 st Generation (previous): Sanger sequencing Applied Biosystems 3730xl: 1 x 10 3 reads / day to 1,000 bp read length

Sequencing Technology: Overview 2 nd Generation (current): 454, Illumina, SoLID, Ion torrent Roche / 454: 1 x 10 6 reads / day to 800 bp read length Illumina: 2 x 10 9 reads / week or 200 bp read length

Sequencing Technology: Overview 3 rd Generation (future): Pacific Biosciences, Nanopore sequencing, Complete Genomics Pacific Biosciences: 1 x 10 5 sequences / hour - 1,000 to 10,000 bp reads (?) - Single molecule sequencing - Goal = $1,000 genome !

Sequencing Technology: Overview 1 st Generation (previous): Sanger – Slow, Expensive, Not clonal, easy to analyze 2 nd Generation (current): 454, Illumina, SoLID, Ion torrent – Faster, Cheaper, Clonal, hard to analyze 3 rd Generation (future): Pacific Biosciences, Nanopore sequencing, Complete Genomics, Helicos – Very fast, Very cheap, Impossible to analyze

Roche / 454 Sequencing How does it work?

Flowgram (instead of chromat)

O’Connor Laboratory Sequencing Sanger sequencing NHP MHC class I genotyping with E. coli based cloning and Sanger sequencing: Throughput of ~ 8 animals per week.

O’Connor Laboratory Sequencing Sanger sequencing Pilot with Roche sequencing center MHC class I genotyping pilot project: ~24 samples per week

O’Connor Laboratory Sequencing Sanger sequencing GS FLX at UIUC Pilot with Roche sequencing center MHC class I genotyping at UIUC, ~ 48 samples per week

O’Connor Laboratory Sequencing Sanger sequencing GS FLX at UIUC Pilot with Roche sequencing center Titanium pilot with Roche sequencing center MHC class I full-length sequencing project with Roche using Titanium chemistry

O’Connor Laboratory Sequencing Sanger sequencing GS Junior in lab GS FLX at UIUC Pilot with Roche sequencing center Titanium pilot with Roche sequencing center MHC class I and viral sequencing projects run in- house ( > 48 samples per week )

Roche/454 Sequencing Advantages Inherently clonal (no bacterial cloning needed) Far cheaper per base than Sanger (3 – 4 orders of magnitude) Reliable read number and data regularity Easy protocol: many people trained

GS Junior 5 Month Run Summary MHC Class I 568bp Amplicon – 9 runs Average70,848 HQ reads523 bp median length Highest101, Lowest33, SIV Whole Genome – 16 runs Average101,846 HQ reads360 bp median length Highest177, Lowest42, SIV Epitope Amplicons (Various Sizes) – 5 runs Average80,244 HQ reads369 bp median length Highest107, Lowest37,066356

Ease of Use  Access to instrument since Jan 2010  34 different fully-trained operators to date  7 additional people have begun training, but have not yet completed a solo run

Ease of Use  Access to instrument since Jan 2010  34 different fully-trained operators to date  7 additional people have begun training, but have not yet completed a solo run

Ultra-Deep vs. Ultra-Wide Sequencing 2 nd & 3 rd Generation = thousands / millions of sequences per run Cost per run is high ($1000s) Can examine polymorphic target at high depth (ultra-deep) – expensive Can sequence many samples sequenced at the same time (ultra-wide) – cheap

Ultra-Deep vs. Ultra-Wide Sequencing Significantly improves sensitivity over traditional Sanger-based sequencing (500x vs 2x coverage)

Ultra-Deep vs. Ultra-Wide Sequencing Ultra-deep Ultra-wide Low frequency ARV resistance TCR sequencing Antibody sequencing HLA Typing Allele frequencies SNP detection

Multiplexed (Ultra-wide) Amplicon Sequencing Multiplex Identifier MID Tag

Methods to increase multiplexing 1.Physically subdividing plate (gasket) 2.Sample specific MID sequence tags 3.Uniquely mixing 5’ & 3’ MID tags PatientMID 1ATCGTAGTCA 2TCCGATCGA 3GTGTAACGT 4CCATGGATC 5TGGATGCAG 6TAGTAGCCA 7GTAGTCTAA 8AACGATGCA 9GCGCTAGCA Patient5' MID3' MID

O’Connor lab sequencing projects NHP comprehensive MHC genotyping & allele discovery (amplicons)

Importance of MHC Class I  MHC class I molecules dictate immunity to disease  High degree of polymorphism within the MHC class I peptide-binding domain  Specific MHC alleles associated with superior control of HIV infection Source: modified from Yewdell et al., Nature Reviews Immunology 2003 Host Immune Genetics

NHP MHC Class I Allele Libraries Total # Alleles in GenBank

NHP MHC Class I Allele Libraries Total # Alleles in GenBank Human HLA class I = 5,400 alleles

Human HLA vs NHP MHC Class I AC AC B B Human HLA class I

Human HLA vs NHP MHC Class I AC AC B B Human HLA class I A1 A1 A2 A2 A4 A4 A3 A3 B1 B1 B2 B2 B3 B3 B4 B4 BN BN A1 A1 A2 A2 A 3 A 4 B1 B1 B2 B2 B3 B3 B4 B4 BN BN Nonhuman primate MHC class I

MHC Genotyping Design 568bp amplicon captures highly variable peptide binding region flanked by conserved sequences Amplifies in multiple primate species Longer reads provide better resolution of alleles % MHC Class I Variability Leader Peptide α 1 Domain α 2 Domain α 3 Domain Cyto- plasmi c Trans- membran e Amino Acid Position FR 568bp Amplicon

MHC Genotyping Design 568bp Amplicon Primer = Adapter (A or B) + MID + sequence-specific

MHC Genotyping Design 568bp Amplicon Primer = Adapter (A or B) + MID + sequence-specific Within a single nonhuman primate sample:

MHC Genotyping Design 568bp Amplicon Primer = Adapter (A or B) + MID + sequence-specific Within an MHC class I amplicon genotyping pool:

Roche/454 MHC Workflow Total RNA isolation and cDNA synthesis – RNA isolation ~4 hrs; cDNA synthesis ~2 hrs Primary PCR amplification – plus SPRI purification, quantification, pooling ~3 hrs emPCR – set-up ~1 hr, run ~5.5 hrs Breaking and enrichment – ~3 hrs GS Junior run – set-up ~1.5 hrs; run time ~10 hrs Data processing and analysis – run processing ~2 hrs; – analysis time varies m

GS Junior Run Metrics – MHC

Reads per Sample Sample MIDRead CountSample MIDRead Count Monkey Monkey Monkey Monkey Monkey003 31,023 Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey ,203 Monkey Monkey Monkey Monkey Monkey ,342 Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey ,672 Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey ,094 Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey Monkey

Allele Calls & Transcript Profiles % Total Reads MHC Class I Alleles

Lymphocyte Specific Expression % Total Reads MHC Class I Alleles

ROGER: INSERT ADDITIONAL DATA SLIDES?

Same methods applicable to HLA typing We have developed a similar assay to genotype human samples: HLA Class I and DRB loci Cheaper, higher-resolution, and higher- throughput than existing methods Can genotype up to 96 individuals per GS-Jr run

High Resolution HLA Genotyping LP α 1 Domain α 2 Domain α 3 Domain CT TM 581-F / 1kb-R bp SBT (Amplicon 2)

High-resolution Typing for 40 Reference Cell Lines UW ID#A*B*C* HLA-Ref01A*31:01:02 B*51:01:01 C*15:02:01 HLA-Ref02A*32:01:01 B*38:01:01 C*12:03:01:01/02 HLA-Ref03A*02:16A*03:01:01:01/03B*51:01:01 C*07:04:01C*15:02:01 HLA-Ref04A*24:02:01:01/02LA*26:02B*40:06:01:01/02B*51:01:01C*08:01:01C*14:02:01 HLA-Ref05A*30:01:01 B*13:02:01 C*06:02:01:01/02 HLA-Ref06 A*02:01:01:01/02L/0 3A*02:07B*46:01:01 C*01:02:01 HLA-Ref07A*33:03:01 B*44:03:01 C*14:03 HLA-Ref08A*30:01:01A*68:02:01:01/02/03B*42:01:01 C*1701 HLA-Ref09A*02:06:01A*11:01:01B*15:01:01:01B*35:01:01:01/02C*03:03:01C*04:01:01:01/02/03 HLA-Ref10A*26:01:01 B*08:01:01 C*07:01:01 HLA-Ref11A*02:04 B*51:01:01 C*15:02:01 HLA-Ref12A*03:01:01:01/03 B*47:01:01:01/02 C*06:02:01:01/02 HLA-Ref13A*01:01:01:01 B*57:01:01 C*06:02 HLA-Ref14 A*02:01:01:01/02L/0 3 B*35:03:01 C*12:03:01:01/02 HLA-Ref15 A*02:01:01:01/02L/0 3 B*35:01:01:01/02 C*04:01:01:01/02/03 HLA-Ref16A*34:01:01 B*15:21B*15:35C*04:03C*07:02:01:01/02/03 HLA-Ref17 A*02:01:01:01/02L/0 3 B*15:01:01:01 C*03:04:01:01/02 HLA-Ref18A*01:01:01:01 B*49:01:01 C*07:01:01 HLA-Ref19A*25:01 B*51:01:01 C*01:02 HLA-Ref20A*30:02:01 B*18:01:01:01 C*05:01:01:01/02 HLA-Ref21A*01:01:01:01A*02:05:01B*08:01:01B*50:01:01C*06:02:01:01/02C*07:01:01 HLA-Ref22A*01:01:01:01A*03:01:01:01/03B*07:02:01B*58:01:01C*07:01:01C*07:02:01:01/02/03 HLA-Ref23A*01:01:01A*02:01B*05:801B*07:02C*07:01C*07:02 HLA-Ref24A*01:01:01:01A*24:02:01:01/02LB*39:06:02B*58:01:01C*07:01:01C*07:02:01:01/02/03 HLA-Ref25A*01:01:01:01A*01:37B*35:01:01:01/02B*58:01:01 HLA-Ref26A*03:01:01:01/03 B*07:02:01B*35:01:01:01/02C*04:01:01:01/02/03C*07:02:01:01/02/03 HLA-Ref27A*03:01:01:01/03 B*07:02:01B*35:01:01:01/02C*04:01:01:01/02/03C*07:02:01:01/02/03 HLA-Ref28A*01:01:01:01A*03:01:01:01/03B*35:01:01:01/02B*58:01:01C*04:01:01:01/02/03C*07:18 (701?) HLA-Ref29A*03:01:01:01/03A*24:02:01:01/02LB*35:01:01:01/02B*51:01:04C*04:01:01:01/02/03C*07:04:01 HLA-Ref30 A*02:01:01:01/02L/0 3A*03:01:01:01/03B*07:02:01B*37:01:01C*06:02:01:01/02C*07:02:01:01/02/03 HLA-Ref31A*01:01:01:01A*24:02:01:01/02LB*39:06:02B*58:01:01C*07:01:01C*07:02:01:01/02/03 HLA-Ref32A*24:02:01:01/02L B*07:02:01B*51:01:01C*07:117 HLA-Ref33A*03:01:01:01/03 B*07:02:01B*35:01:01:01/02C*04:01:01:01/02/03C*07:02:01:01/02/03 HLA-Ref34A*03:01:01:01/03A*24:02:01:01/02LB*35:01:01:01/02B*39:06:02C*04:01:01:01/02/03C*07:02:01:01/02/03 HLA-Ref35 A*02:01:01:01/02L/0 3A*24:02:01:01/02LB*07:02:01B*13:02:01C*06:02:01:01/02C*07:02:01:01/02/03 HLA-Ref36A*24:02:01:01/02LA*31:01:02B*07:02:01B*40:01:02C*03:04:01:01/02C*07:02:01:01/02/03 HLA-Ref37 A*02:01:01:01/02L/0 3A*24:02:01:01/02LB*15:01:01:01B*39:06:02C*03:03:01C*07:02:01:01/02/03 HLA-Ref38A*3402A*7401B*801B*1503C*02:10C*701 HLA-Ref39A*2308NA*301B*440301B*5129C*02:02:02C*04 HLA-Ref40 A*02:01:01:01/02L/0 3A*29:02:01B*35:01:01:01/02B*44:03:01C*04:01:01:01/02/03C*16:01:01

Example High-Resolution HLA Genotypes with DRB SampleAllele Read s1kbF581F581R1kbRDRB-FDRB-R HIV_114A*36: HIV_114A*68:01: HIV_114B*41:02: HIV_114B*53:01: HIV_114C*04:01: HIV_114C*17:01:01 (primer) HIV_114DRB1*01:02: HIV_114DRB1*16:02: HIV_114DRB5*02-novel?60. HIV_115A*03:01: HIV_115A*11:01: HIV_115B*07:02: HIV_115B*51:01: HIV_115C*07:02: HIV_115C*15:02: HIV_115DRB1*04:04: HIV_115DRB1*07:01: HIV_115DRB4*01:01:01: HIV_115DRB4*01:03:01: HIV_116A*01:01: HIV_116A*02:01: HIV_116B*08:01: HIV_116B*15:01: HIV_116C*03:04: HIV_116C*07:01: HIV_116DRB1*03:01: HIV_116DRB1*04:01: HIV_116DRB3*01:01: HIV_116DRB4*01:03:01: SampleAlleleReads1kbF581F581R1kbRDRB-FDRB-R HIV_117A*26:01: HIV_117A*29:02: HIV_117B*44:03:01 (putative) HIV_117B*44:10 (putative) HIV_117C*04:01: HIV_117 DRB1*03:01: HIV_117DRB1*07:01: HIV_117DRB3*02:02: HIV_117DRB4*01:03:01: HIV_118A*02:01: HIV_118A*23:01: HIV_118B*40:01: HIV_118B*44:03: HIV_118C*03:04: HIV_118C*14: HIV_118DRB1*04:01: HIV_118DRB1*10:01: HIV_118DRB4*01:03:01: HIV_119A*29:01:01: HIV_119A*68:01: HIV_119B*07:05: HIV_119B*44:02:01: HIV_119C*05:01: HIV_119C*15:05:01/ HIV_119DRB1*04:04: HIV_119DRB1*07:01: HIV_119DRB4*01:03:01: