TWO-DIMENSIONAL (2+n) REMPI SPECTROSCOPY: STATE INTERACTIONS, PHOTOFRAGMENTATIONS AND ENERGETICS OF THE HYDROGEN HALIDES JINGMING LONG, HUASHENG WANG,

Slides:



Advertisements
Similar presentations
Understanding Complex Spectral Signatures of Embedded Excess Protons in Molecular Scaffolds Andrew F. DeBlase Advisor: Mark A. Johnson 68 th Internatinal.
Advertisements

Agust,www,....january09/PPT aka.ppt Agust,heima,... january09/XLS ak.xls About enhanced I( 35 Cl + )/I(H 35 Cl + ) values in a) g 3  + (1),v´=0.
Group IV presentation: Frímann, Helgi, Long & Nanna.
Silver Nyambo Department of Chemistry, Marquette University, Wisconsin Resonance enhanced two-photon ionization (R2PI) spectroscopy of halo-aromatic clusters.
Ultraviolet Photodissociation Dynamics of the Cyclohexyl Radical Michael Lucas, Yanlin Liu, Jingsong Zhang Department of Chemistry University of California,
MALDI-TOF:
INVESTIGATION OF O 2 (C 3 , v=2) BY NOVEL LASER PHOTOIONIZATION TECHNIQUE IN AIR AT ATMOSPHERIC PRESSURE Jonathan D. Umbel, Dr. Steven F. Adams, Dr. Charles.
Ar Cl Ar Cl... Ar Cl Ar + - Cl Ar Stilben e(1)
Pnt I rel AK: ; agust,heima/rannsóknir/REMPI/HF/fra Wang/HF test skimmer pxp & HF t skimmer ppt Fig. 1.
CH2Br2 agust,www,....ch2br2/PPT ak.ppt agust,heima,....CH2Br2/Long, Sept-11/Merged CH2Br2 spectra jlak.pxp agust,heima,....CH2Br2/Long, Sept-11/Merged.
Agust,www,...january09/PPT ak.ppt Model used on 1)“New system data” (g 3  + (1) 
II. Multi- photon excitation / ionization processes
HBr, F 1  2, v´=1
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
Voltage divider HV - 2Kv supply HX Nozzle Turbo Pump TOF Tube Focus lens MCP Detector Oscilloscope Computer EXT Excimer Laser One Shot Cycle Input Output.
HCl H+ signal near agust,heima,...januar09/V8_f3d2(alignment) vhw.pxp.
New states and peaks we found 29/06/2011 JLong. StateV’  I(Br + )/I(HBr + ) Linewidth (cm -1 ) Lifetime (ps) f33f3 % f32f32.
Agust,heima,...january09/PPT ak.ppt cm cm-1 F, v´= cm-1 Agust,heima,..january09/PXP ak.pxp.
Bandwidth analysis of F 1 Δ, V 1 Σ & H 1 Σ states Helgi Rafn Hróðmarsson.
- acid formation(?). = HCl Water / H 2 O = i.e.: H 3 O Cl - (aq) HCl + H 2 O(l)
Off-resonance interaction between E and V state of HCl and HBr Jingming Long 22/09/2011.
CH3Br agust,www,...Sept09/PPt ak.ppt agust,heima,....Sept09/CH3BR avhwak.pxp agust,heima,....Sept09/CH3BR bvhwak.pxp.
La-Mediated Bond Activation, Coupling, and Cyclization of 1,3-butadiene Probed by Mass-Analyzed Threshold Ionization Spectroscopy Department of Chemistry.
Probing the electronic structure of the Nickel Monohalides: Spectroscopy of the low-lying electronic states of NiX (X=Cl, Br, I). Lloyd Muzangwa Molecular.
IAMS, Academia Sinica, Taiwan, 台灣 中研院原分所 Course: Molecular Spectroscopy Taiwan International Graduate Program (TIGP) Professor: Wen-Bih Tzeng, Lab: 108,
PhD project overview - REMPI analyses of small, iodine containing molecules Helgi Rafn Hróðmarsson.
MwpntspeciesMwcalc 191H+1, C+11, CH+13, CH2+13, CH3+15, C2+24, C2H+24, C2H2+25,94874.
Vibrational and Geometric Structures of La 3 C 2 O and La 3 C 2 O + from MATI Spectra and ab initio Calculations Mourad ROUDJANE, Lu WU, and Dong-Sheng.
Controlling Matter with Light Robert J. Gordon University of Illinois at Chicago DUV-FEL Seminar January 6, 2004 NSF, DOE, PRF, UIC/CRB, Motorola.
HCl, negative ion detections 1hv ion-pair spectra (slides 3-4) Loock´s prediction about H+ + Cl- formation channels(slides 5-6) Energetics vs Dye for V(v´= )
Experimental and Theoretical Investigations of HBr+He Rotational Energy Transfer M. H. Kabir, I. O. Antonov, J. M. Merritt, and M. C. Heaven Department.
PUMP-PROBE MEASUREMENTS OF ROTATIONAL ENERGY TRANSFER RATES IN HBr + HBr COLLISIONS M. H. Kabir, I. O. Antonov, and M. C. Heaven Emory University Department.
Institute of Experimental Physics 1 Wolfgang E. Ernst Photoionization of Alkali-Doped Helium Nanodroplets Moritz Theisen, Florian Lackner, Günter Krois,
Wbt1 Chapter 10. REMPI, ZEKE, and MATI Spectroscopies Resonance-enhanced multiphoton ionization (REMPI) spectroscopy involves more than one photons in.
Sanghamitra Deb, Michael P. Minitti, Peter M. Weber Department Of Chemistry Brown University 64 th OSU International Symposium on Molecular Spectroscopy.
Plan for HBr VMI experiments in FORTH, autumn 2014 & progress -one and two-color experiments States to study……………………………………………….2-3 Rotational lines……………………………………………….4-5.
PHOTOFRAGMENTATIONS, STATE INTERACTIONS AND ENERGETICS OF HALOGEN CONTAINING MOLECULES: TWO-DIMENSIONAL (2+n) REMPI ÁGÚST KVARAN, et al. Science Institute,
The study of two previous papers in REMPI sepectra Jingming Long
Towards Isolation of Organometallic Iridium Catalytic Intermediates Arron Wolk Johnson Laboratory Thursday, June 20 th, 2013.
Studies of Molecular Photoruptures by using 2 Dimension (2+1) and (3+1) REMPI-TOF Jingming Long 15/09/2010.
HBr; Updated: Imaging experiments in Crete Labtop..C:……/Crete/HBr/PPT aka.pptx &
Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN the Dissociation Limit. Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN Above the Dissociation.
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.
HBr Energetics agust,www,....hbr/PPT ak.ppt agust, heima,...HBr/XLS ak.xls.
HBr, angular distribution analysis E(0) Updated,
Imaging studies of S + fragments from the UV photolysis of state selected H 2 S + cations A.D. Webb, R.N. Dixon and M.N.R. Ashfold School of Chemistry,
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
2 3 With UV irradiation: Cl 2 + h  2 Cl* Cl* + H 2 (v = 0)  HCl + H Cl* + matrix  Cl Cl + H 2 (v = 0)  no reaction With IR irradiation: H 2 (v =
HBr, V(m+4) (and E(0)) (Updated ; slide: 24-6) 1)KER spectra vs J´ (slides 2-3) 2)I(H + + Br(1/2))/I(H + + Br(3/2)) vs. J´(slide 4) 3)Comparison.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
Multi-step and Multi-photon Excitation Studies of Group-IIB Elements
Time-Resolved IR and Mass Spectroscopy of Laser-Ablated Magnesium
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
CH3I VMI-REMPI data and analysis:
ENERGY TRANSFER IN HBr + HBr AND HBr + He COLLISIONS
Mass-Analyzed Threshold Ionization Spectroscopy
Characterization of CHBrCl2 photolysis by velocity map imaging
DCl (HCl) Heavy Rydberg states work Exploring V state spectra
Molecular spectroscopy and reaction dynamics Group III
Frauke Schroeder and Edward R. Grant Department of Chemistry
6pp 3S- vs l / J´ Updated: One color, H+ detection: pages
HBr Mass resolved REMPI and Imaging REMPI.
CH3I VMI-REMPI data and analysis:
C-H Bond Activation of Butenes
Perturbation analysis in REMPI Spectra of HCl and HBr
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Department of Chemistry University of Kentucky
Presentation transcript:

TWO-DIMENSIONAL (2+n) REMPI SPECTROSCOPY: STATE INTERACTIONS, PHOTOFRAGMENTATIONS AND ENERGETICS OF THE HYDROGEN HALIDES JINGMING LONG, HUASHENG WANG, KRISTJÁN MATTHÍASSON, HELGI RAFN HRÓÐMARSSON, ÁGÚST KVARAN Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík, Iceland. Oral presentation at “international Symposium on Molecular Spectroscopy; 66th Meeting” June 20-24, 2011, Ohio State University

Voltage devider HV - 2Kv HX nozzle Turbo Pump TOF lense MCP detector oscilloscope computer Excimer Laser In out Dye- Laser SHG Time delay  S laser control Pellin Broca prism SHG control In out

REMPI = Resonance Enhanced MultiPhoton Ionization Resonance Excitation to high energy states of neutral species, followed by photon ionization; For example: 1xh 2xh 2 E AB AB + + e AB**

Intensity Mw H+H+ 35 Cl + H 35 Cl + H 37 Cl + 12 C + Two photon resonance excitation= cm -1 Mass spectrum RCl = HCl

Mw / rel. 35 Cl + H 35 Cl + H 37 Cl + 2xhv Mw 35 Cl + 37 Cl + H 37 Cl + H 35 Cl + /cm -1

r(H-X) Energy HX H X ** H + --X - HX + H + X + e-e- e-e- + HX REMPI: IE limit v´ J´ v´ J´

270 cm -1

V 1  + (v´=m+10)

H 35 Cl + 35 Cl + Q J´=J´´ = HCl, F 1  2 2h  / cm -1 Intensity

r(H-X) Energy HX H X ** H + --X - HX + / HX + H + X + e-e- e-e- + HX REMPI: IE limit v´ J´ v´ J´

State Interactions ? (1) /  0 (2) /  0 12  c 1  0 1  a  c 2  0 2 = +  b =  c 1 ´  0  c 2 ´   c 1  c = 1 E

W 12 : Interaction strength (1) /  0 (2) /  0 12  c 1  0 1  a  c 2  0 2 = +  b =  c 1 ´  0  c 2 ´   c 1  c = 1 E

(1) /  0 (2) /  0 12  c 1  0 1  a  c 2  0 2 = +  b =  c 1 ´  0  c 2 ´   c 1  c = 1 E( ) E( J´ ) EE E

H 35 Cl + 35 Cl + Q J´=J´´ = HCl, F 1  2 2h  / cm -1 Intensity

x  E J´=8 = 11.3 cm -1 HCl: F 1  2 V 1   c 1 2  c 2 2 X ?

H 35 Cl + 35 Cl + Q J´=J´´ = HCl, F 1  2 2h  / cm -1 Com- press- ion E x p a n s i o n Intensity



x  E J´=8 = 11.3 cm -1 HCl: F 1  2 V 1   c 1 2  c 2 = X? 6 cm -1 from line shifts

r(H-X) Energy HX H X ** H + --X - HX + / HX + H + X + e-e- e-e- + HX REMPI: IE limit v´ J´ v´ J´ c1c1 2 c2c2 2 ? X +

r(H-X) Energy HX H X ** H + --X - HX + / HX + H + X + e-e- e-e- + HX REMPI: v´ J´ v´ J´ H + X X+X+

r(H-X) Energy HX H X ** H + --X - HX + / HX + H + X + e-e- e-e- + HX REMPI: v´ J´ v´ J´ HX*** H + X* X+X+

r(H-X) E HX H + --X - HX + / HX + H + X + e-e- HX REMPI: v´ J´ v´ J´ c1c1 2 c2c2 2 X+X+ X X* c1c1 c2c I (HX + ) = c1c1 c2c I (X + ) = Ry:I.P./V: c2c2 2 c2c2 2 == X+)/X+)X+)/X+)  =    X + ) /    X + )  = X+)/X+)X+)/X+)

r(H-X) E HX H + --X - HX + / HX + H + X + e-e- HX REMPI: v´ J´ v´ J´ c1c1 2 c2c2 2 X+X+ X X* c2c2 2 c2c2 2   = X+)/X+)X+)/X+)   = X+)/X+)X+)/X+)

Exp.Q i=35i=37 I( i Cl + )/I(H i Cl + ) Exp.Q Calc. V,v´ = 20 Calc. V,v´=20 j 3  - 1 ; ´=0 isotopomersH 35 ClH 37 Cl J´ closest resonances(J´ res )22 |  E(J´ res ) | / cm W 12 (J´ res ) / cm c 1 2 (c 2 2 ) (J´ res )0.89(0.11)0.81(0.19)   14 x x H i Cl j 3  - 1 > > <   K. Matthíasson et al. J. Chem. Physics, 134, , (2011)

r(H-X) Energy HX HX** H + --X - HX + / HX + H + X + e-e- HX REMPI: v´ J´ v´ J´ H + X X+X+ j 3  - 1 t 3  + 1 S/O

H 35 Cl f 3  2 f 3  1 I( 35 Cl + )/I(H 35 Cl + ) States f32f32 f31f31 J´ closest resonances(J´ res )56 |  E(J´ res ) | / cm W 12 max (J´ res )/ cm c 1 2 (J´ res )  00 1.0 x < > Exp.Q Calc. V,v´=9 Exp.S Calc. V,v´=8 <

H 35 Cl f 3  2 f 3  1 I( 35 Cl + )/I(H 35 Cl + ) Exp.Q Calc. V,v´=9 Exp.S Calc. V,v´=8  No dissociation No predissociation pathway Dissociation: Predissociation by S/O couplings via “Gateway Rydberg states ( 1 , 3  )” :

H 37 Cl j 3  - (0 + ) Exp. Q

J´=0 J´=6 J´=6 v´=21 J´=6 v´=20 J´=0 : : j 3  - (0 + ), v´=0 V 1  (0 + ) H 37 Cl Near resonance  S  ´=0 E/cm -1

Calc. V,v´=20 V,v´=21 H 37 Cl j 3  - (0 + ) Exp. Q V´ statesv´=20v´=21 J´ closest resonances(J´ res )6 |  E(J´ res ) | / cm W 12 (J´ res ) / cm c 1 2 (J´ res )0.82  4.0(52 x )

H 79 Br

J´=0 J´=6 J´=9 J´=6 v´=m+5 H 79 Br E 1  (0 + ), v´=0 J´=9 v´=m+4 J´=0 V 1  (0 + ) Off resonance S S  ´=0 J´=6 J´=0 E/cm -1

H 79 Br, E(v´=0) I( 79 Br + )/I(H 79 Br + ) Linewidth/ cm -1

: Victor Huasheng Wang Kristján Matthíasson Jingming Long Helgi Rafn Hróðmarsson Coworkers: *