Chapter 24 Wave Optics Conceptual Quiz Questions.

Slides:



Advertisements
Similar presentations
Wave Nature of Light  Refraction  Interference  Young’s double slit experiment  Diffraction  Single slit diffraction  Diffraction grating.
Advertisements

Light Chapter
The Wave Nature of Light Chapter 24. Properties of Light Properties of light include reflection, refraction, interference, diffraction, and dispersion.
Chapter 24 Wave Nature of Light: © 2006, B.J. Lieb
The Wave Nature of Light
The Wave Nature of Light
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Snell’s Law Snell’s Law describes refraction as light strikes the boundary between two media n1 sin q1 = n2 sin q2 The index of refraction of a pure vacuum.
PHYS 1442 – Section 004 Lecture #21 Wednesday April 9, 2014 Dr. Andrew Brandt Ch 24 Wave Nature of Light Diffraction by a Single Slit or Disk Diffraction.
Chapter 24 Wave Optics.
Chapter 34 The Wave Nature of Light; Interference
Chapter 34 The Wave Nature of Light; Interference
IVA. Electromagnetic Waves and Optics
Lecture 3 – Physical Optics
Diffraction through a single slit
Chapter 25: Interference and Diffraction
B. Wave optics Huygens’ principle
Chapter 16 Light Waves and Color
Mfd Sir Isaac Newton ( ) believed that light consisted of particles or corpuscles. The Dutch scientist, Christian Huygens ( ), agreed.
9.12 Diffraction grating • Order of diffraction
Chapter 32 Light: Reflection and Refraction
Copyright © 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction.
Physics 6C Interference of EM Waves. Young’s Double Slit Experiment In Young’s double-slit experiment light comes from the left and passes through the.
An unpolarized beam of light is incident on a pane of glass (n = 1
The wave nature of light Interference Diffraction Polarization
Chapter 27 Interference and the Wave Nature of Light.
Interference and the Wave Nature of Light
The Wave Nature of Light
Wave Nature of Light & Electromagnetic Waves History, Light is a Wave & Polarization History, Light is a Wave & Polarization.
1. Waves and Particles 2. Interference of Waves
Interference of Waves Beats Double Slit
In the previous chapter we were treating light as rays. A powerful simple method. Now we are treating light as a wave. Chapter 37 & 38: The wave nature.
Diffraction is the bending of waves around obstacles or the edges of an opening. Huygen’s Principle - Every point on a wave front acts as a source of tiny.
Quantum Theory of Light
AP Physics IV.B Physical Optics Linear Superposition.
Dr. Quantum General Physics 2Light as a Wave1. General Physics 2Light as a Wave2 The Nature of Light When studying geometric optics, we used a ray model.
Ch 16 Interference. Diffraction is the bending of waves around obstacles or the edges of an opening. Huygen’s Principle - Every point on a wave front.
Copyright © 2009 Pearson Education, Inc. Chapter 34 The Wave Nature of Light; Interference.
1© Manhattan Press (H.K.) Ltd. Young’s double slit experiment Young’s double slit experiment 9.10 Interference of light waves Relationship between x,,
The Wave Nature of Light
Lecture 24 Interference of Light.
Wave Optics Interference and other Mysteries Explained Particle or wave?
Wave Optics.
Physics 1C Lecture 27A. Interference Treating light as a particle (geometrical optics) helped us to understand how images are formed by lenses and mirrors.
The Nature of Light. Light Can Act Like Waves or In 1801 Thomas Young an English scientist did an experiment. –Double slit experiment Passed a beam of.
The Bending of Light and Lenses Chapter 18 and 19.
Higher Physics – Unit Waves. a a λ λ crest trough Wave Theory All waves transmit energy. The energy of a wave depends on its amplitude. a = amplitude.
Physics 11 Advanced Mr. Jean May 23 rd, The plan: Video clip of the day Wave Interference patterns Index of refraction Slit & Double Slit interference.
Conditions for Interference
Sunlight, as the rainbow shows us, is a composite
Chapter 24 The Wave Nature of Light
AP Physics 2 Unit 7 Refraction and Physical Optics.
Wave Optics Unit 11. Light In the last unit, we studied several properties of light, including refraction and reflection. However, these were geometric.
Physical optics Done by P G LOGAN. Physical optics Physical optics deals with phenomena that depend on the wave nature of light. There are three types.
Physical Optics Ch 37 and 38. Physical Optics Light is an electromagnetic wave. Wave properties: Diffraction – wave bends around corners, spreads out.
Chapter 24 Wave Optics. Young’s Double Slit Experiment Thomas Young first demonstrated interference in light waves from two sources in Light is.
Young's double-slit experiment
B. Wave optics Huygens’ principle
Chapter 25 Wave Optics.
Ch 16 Interference.
Diffraction through a single slit
Diffraction and Thin Film Interference
Interference and the Wave Nature of Light
Phys102 Lecture 25 The Wave Nature of Light; Interference
Chapter 35-Diffraction Chapter 35 opener. Parallel coherent light from a laser, which acts as nearly a point source, illuminates these shears. Instead.
Interference Introduction to Optics Coherent source
B. Wave optics Huygens’ principle
Presentation transcript:

Chapter 24 Wave Optics Conceptual Quiz Questions

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 The particle theory of light is attributed to (A) Christian Huygens. (B) Isaac Newton. (C) Max Planck. (D) Albert Einstein. 02 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 When a beam of light (wavelength = 590 nm), originally traveling in air, enters a piece of glass (index of refraction 1.50), its frequency (A) increases by a factor of (B) is reduced to 2/3 its original value. (C) is unaffected. (D) none of the given answers 03 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 When a beam of light (wavelength = 590 nm), originally traveling in air, enters a piece of glass (index of refraction 1.50), its wavelength (A) increases by a factor of (B) is reduced to 2/3 its original value. (C) is unaffected. (D) none of the given answers 04 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 Radio waves are diffracted by large objects such as buildings, whereas light is not noticeably diffracted. Why is this? (A) Radio waves are unpolarized, whereas light is plane polarized. (B) The wavelength of light is much smaller than the wavelength of radio waves. (C) The wavelength of light is much greater than the wavelength of radio waves. (D) Radio waves are coherent and light is usually not coherent. 05 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 In a double-slit experiment, it is observed that the distance between adjacent maxima on a remote screen is 1.0 cm. What happens to the distance between adjacent maxima when the slit separation is cut in half? (A) It increases to 2.0 cm. (B) It increases to 4.0 cm. (C) It decreases to 0.50 cm. (D) It decreases to 0.25 cm. 06 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 The separation between adjacent maxima in a double- slit interference pattern using monochromatic light is (A) greatest for red light. (B) greatest for green light. (C) greatest for blue light. (D) the same for all colors of light. 07 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 White light is (A) light of wavelength 550 nm, in the middle of the visible spectrum. (B) a mixture of all wavelengths in the visible spectrum. (C) a mixture of red, green, and blue light. (D) the term used to describe very bright light. (E) the opposite (or complementary color) of black light. 08 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 Light with wavelength slightly shorter than 400 nm is called (A) ultraviolet light. (B) visible light. (C) infrared light. (D) none of the given answers 09 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 Light with wavelength slightly longer than 750 nm is called (A) ultraviolet light. (B) visible light. (C) infrared light. (D) none of the given answers 10 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 Which color of light undergoes the greatest refraction when passing from air to glass? (A) red (B) yellow (C) green (D) violet 11 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 Two waves having the same amplitude and the same frequency pass simultaneously through a uniform medium. Maximum destructive interference occurs when the phase difference between the two waves is (A) 0 o (B) 90 o (C) 180 o (D) 360 o 12 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 What occurs when light passes from water into glass? (A) Its speed decreases, its wavelength becomes shorter, and its frequency remains the same. (B) Its speed decreases, its wavelength becomes shorter, and its frequency increases. (C) Its speed increases, its wavelength becomes longer, and its frequency remains the same. (D) Its speed increases, its wavelength becomes longer, and its frequency decreases. 13 of 14

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 The principle which allows a rainbow to form is (A) refraction. (B) polarization. (C) dispersion. (D) total internal reflection.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 In terms of the wavelength of light in magnesium fluoride, what is the minimum thickness of magnesium fluoride coating that must be applied to a glass lens to make it non- reflecting for that wavelength? (The index of refraction of magnesium fluoride is intermediate to that of glass and air.) (A) one-fourth wavelength (B) one-half wavelength (C) one wavelength (D) There is no minimum thickness.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 A convex lens is placed on a flat glass plate and illuminated from above with monochromatic red light. When viewed from above, concentric bands of red and dark are observed. What does one observe at the exact center of the lens where the lens and the glass plate are in direct contact? (A) a bright red spot (B) a dark spot (C) a rainbow of color (D) a bright spot that is some color other than red

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 We have seen that two monochromatic light waves can interfere constructively or destructively, depending on their phase difference. One consequence of this phenomenon is (A) the colors you see when white light is reflected from a soap bubble. (B) the appearance of a mirage in the desert. (C) a rainbow. (D) the way in which Polaroid sunglasses work.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 Why would it be impossible to obtain interference fringes in a double-slit experiment if the separation of the slits is less than the wavelength of the light used? (A) The very narrow slits required would generate many different wavelengths, thereby washing out the interference pattern. (B) The two slits would not emit coherent light. (C) The fringes would be too close together. (D) In no direction could a path difference as large as one wavelength be obtained, and this is needed if a bright fringe, in addition to the central fringe, is to be observed.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 One beam of coherent light travels path P 1 in arriving at point Q and another coherent beam travels path P 2 in arriving at the same point. If these two beams are to interfere destructively, the path difference P 1 - P 2 must be equal to (A) an odd number of half-wavelengths. (B) zero. (C) a whole number of wavelengths. (D) a whole number of half-wavelengths.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 The wave theory of light is attributed to (A) Christian Huygens. (B) Isaac Newton. (C) Max Planck. (D) Albert Einstein.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 When a light wave enters into a medium of different optical density, (A) its speed and frequency change. (B) its speed and wavelength change. (C) its frequency and wavelength change. (D) its speed, frequency, and wavelength change.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 At the first maxima on either side of the central bright spot in a double-slit experiment, light from each opening arrives (A) in phase. (B) 90° out of phase. (C) 180° out of phase. (D) none of the given answers

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 If a wave from one slit of a Young's double slit experiment arrives at a point on the screen one-half wavelength behind the wave from the other slit, which is observed at that point? (A) bright fringe (B) gray fringe (C) multi-colored fringe (D) dark fringe

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 The principle which explains why a prism separates white light into different colors is (A) refraction. (B) polarization. (C) dispersion. (D) total internal reflection.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 Which color of light undergoes the smallest refraction when passing from air to glass? (A) red (B) yellow (C) green (D) violet

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 In a single slit diffraction experiment, if the width of the slit increases, what happens to the width of the central maximum on a screen? (A) It increases. (B) It decreases. (C) It remains the same. (D) There is not enough information to determine.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 Consider two diffraction gratings; one has 4000 lines per cm and the other one has 6000 lines per cm. Make a statement comparing the dispersion of the two gratings. (A) The 4000-line grating produces the greater dispersion. (B) Both gratings produce the same dispersion, but the orders are sharper for the 4000-line grating. (C) Both gratings produce the same dispersion, but the orders are sharper for the 6000-line grating. (D) The 6000-line grating produces the greater dispersion.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 The colors on an oil slick are caused by reflection and (A) diffraction. (B) interference. (C) refraction. (D) polarization.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 When a beam of light, which is traveling in air, is reflected by a glass surface, there is (A) a 90° phase change in the reflected beam. (B) no phase change in the reflected beam. (C) a 180° phase change in the reflected beam. (D) a 45° phase change in the reflected beam.

Chapter 24: Wave Optics ~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 Which of the following is a false statement? (A) All points on a given wave front have the same phase. (B) Rays are always perpendicular to wave fronts. (C) All wave fronts have the same amplitude. (D) Wave fronts bend when moving obliquely from one medium to another.

~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 A

~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 B

~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 C

~M1~M2~M3~M4~M5~M6~M7~M8~M10 ~M9 ~M11~M12~M13~M14~M15~M16~M17~M18~M20 ~M19 ~M21~M22~M23~M24~M25~M26~M27~M28~M30 ~M29 ~M31~M32~M33~M34~M35~M36~M37~M38~M40 ~M39 ~M41~M42~M43~M44~M45~M46~M47~M48~M50 ~M49 ~M51~M52~M53~M54~M55~M56~M57~M58~M60 ~M59 D

24