PHYS377: A six week marathon through the firmament by Orsola De Marco Office: E7A 316 Phone: Week 1.5, April 26-29, 2010
Overview of the course 1.Where and what are the stars. How we perceive them, how we measure them. 2.(Almost) 8 things about stars: stellar structure equations. 3.The stellar furnace. 4.Stars that lose themselves and stars that lose it: stellar mass loss and explosions. 5.Stellar death: stellar remnants. 6.When it takes two to tango: binaries and binary interactions.
Things about stars Inspired by S. Smartt lectures – Queens University, Belfast
A stellar model Determine the variables that define a star, e.g., L, P(r), r . Using physics, establish an equal number of equations that relate the variables. Using boundary conditions, these equations can be solved exactly and uniquely. Observe some of the boundary conditions, e.g. L, R…. and use the eqns to determine all other variables. You have the stellar structure. Over time, energy generation decreases, the star needs to readjust. You can determine the new, post-change configurations using the equations: you are evolving the star. Finally, determine the observable characteristics of the changed star and see if you can observe a star like it!
Equations of stellar structure For a star that is static, spherical, and isolated there are several equations to fully describe it: 1.The Equation of Hydrostatic Equilibrium. 2.The Equation of Mass Conservation. 3.The Equation of Energy Conservation. 4.The Equation of Energy Transport. 5.Equation of State. 6.Equation of Energy Generation. 7.Opacity. 8.Gravitational Acceleration
Net gravity force is “inward”: g = GM/r 2 Pressure gradient “outward” Stellar Equilibrium
Mass of element where (r)=density at r. Forces acting in radial direction: 1. Outward force: pressure exerted by stellar material on the lower face: 2. Inward force: pressure exerted by stellar material on the upper face, and gravitational attraction of all stellar material lying within r 1. Equations of hydrostatic equilibrium Balance between gravity and internal pressure
In hydrostatic equilibrium: If we consider an infinitesimal element, we write for r 0 Hence rearranging above we get The equation of hydrostatic support
The central pressure in the Sun Just using hydrostatic equilibrium and some approximations we can determine the pressure at the centre of the Sun.
Dynamical Timescale (board proof) dyn = √ ( R 3 /GM ) It is the time it takes a star to react/readjust to changes from Hydrostatic equilibrium. It is also called the free-fall time.
2. Equation of mass conservation This tells us that the total mass of a spherical star is the sum of the masses of infinitesimally small spherical shells. It also tells us the relation between M(r), the mass enclosed within radius r and (r) the local mass density at r. In the limit where r 0 Consider a thin shell inside the star with radius r and outer radius r+ r
Two equations in three unknowns
3. Equation of State Where , the mean molecular weight, is a function of composition and ionization, and we can assume it to be constant in a stellar atmosphere (≈0.6 for the Sun).
Three equations in four unknowns
Radiation transport
Equation of radiative energy transport
The Solar Luminosity
Convection If rises, dT/dr needs to rise to, till it is very high. High gradients lead to instability. What happens then? Imagine a small parcel of gas rising fast (i.e. adiabatically – no heat change). Its P and will change. P will equalise with the environment. If p < surr. the parcel keeps rising. So if the density gradient in the star is small compared to that experienced by the (adiabatically) rising parcel, the star is stable against convection.
Giant star: convection simulation Simulation by Matthias Steffen
Equation of Energy Conservation