Minerlaogi II Average Composition of the Continental Crust Weight PercentVolume Percent Si O O Table 3.4.

Slides:



Advertisements
Similar presentations
A Tour of the Rock Forming Silicates
Advertisements

Inosilicates (chain) Common Fe/Mg – bearing silicates
Silicates are classified on the basis of Si-O polymerism
Back to silicate structures: nesosilicates inosilicates tectosilicates phyllosilicates cyclosilictaes sorosilicates.
Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) Diopside: CaMg [Si 2 O 6 ] b a sin  Where are.
Mineral Structures Silicates are classified on the basis of Si-O polymerism the [SiO 4 ] 4- tetrahedron.
Disilicates and Ring Silicates
Back to silicate structures:
AMPHIBOLES (double chains)  General formula:  X 2 Y 5 Z 8 O 22 (OH) 2 the box is a site that may be vacant and takes Na and K  X= Ca, Mg, Fe, Na; Y=
Lecture 4 (9/18/2006) Crystal Chemistry Part 3: Coordination of Ions Pauling’s Rules Crystal Structures.
Lecture 5 Crystal Chemistry Part 4: Compositional Variation of Minerals 1. Solid Solution 2. Mineral Formula Calculations.
Six-sided, pyramidal Quartz Crystals.
Mineral Chemistry and Crystallography. Definition of a Mineral All minerals: 1) Occur naturally 2) Are inorganic solids 3) Have a definitive chemical.
Systematic Mineralogy Description of how minerals are divided into groups Description of how minerals are divided into groups Groups based on anions Groups.
Ionic Coordination and Silicate Structures Lecture 4.
The Phase Rule in Metamorphic Systems
Pyroxenes Pyroxenes are a major component of the mantle (peridotite is olivine plus pyroxene)
Bridging oxygen Apical oxygen Non-bridging oxygen.
2 - MINERALS Building Blocks of Rocks Matter & Atomic Structure Bonding Minerals –Physical properties of minerals –Major rock-forming mineral families.
Sheet Silicates – aka Phyllosilicates
Feldspar Group Most abundant mineral in the crust  6 of 7 most common elements Defined through 3 end-members  Albite (Na), Anorthite (Ca), Orthoclase.
Chapter 2 Inorganic Solids in Soil continued.
Feldspar Group Most abundant mineral in the crust  6 of 7 most common elements Defined through 3 end-members  Albite (Na), Anorthite (Ca), Orthoclase.
SiO 2 After Swamy and Saxena (1994) J. Geophys. Res., 99, 11,787-11,794.
Lecture 17 Systematic Description of Minerals
Lecture 20 (12/06/2006) Systematic Description of Minerals Part 4: Silicates II: Cyclosilicates, Inosilicates, Phyllosilicates and Tectosilicates.
The Biogeochemistry of Soils: Soils from Stars Composition of soils on earth is arguably unexpected Soils, and Earth, not reflective of chemistry of Universe.
Lecture 19 (12/04/2006) Systematic Description of Minerals Part 3: Silicates I: Introduction, Nesosilicates, and Sorosilicates.
MINERALS TYPES OF BONDING INTERMOLECULAR BONDING HYDROGEN BONDING Occurs primarily between water molecules due to polarity. VAN DER WAALS BONDING Occurs.
Mineralogy Minerals and crystals. World’s largest crystals: A cave in the Naica Lead Zinc mine, Mexico.
Sheet Silicates Abundant and common minerals throughout upper 20 km of crust Abundant and common minerals throughout upper 20 km of crust Felsic to intermediate.
EARTH MATERIALS III Rock-forming minerals: silicates Professor Peter Doyle
MOST IMPORTANT MINERAL SUITE: The Silicate Minerals
Rocks are aggregates of minerals. Many are silicate minerals. This granite, an igneous rock, has Quartz, an amphibole called Hornblende, a pink potassium.
MINERALS. Chemical composition of the Crust n Oxygen most abundant- 46.6% n Followed by silicon and aluminum n Iron, Calcium, Sodium, Potassium, Magnesium.
Ionic radius is related to the valence of the ion - ions that have lost electrons (cations) are smaller than their neutral state, ions that have gained.
List of 10 minerals (groups) you really want to know to be people Quartz, Olivine, Amphibole, Pyroxene, Feldspars, Garnet, Staurolith, Aluminosilicates,
  … is a naturally occurring, solid, with highly ordered atomic arrangement, homogeneous chemical composition.  Minerals are formed by inorganic processes.
EPSC210 Introductory Mineralogy
Weathering -II.
Chapter 10 - B Identification of minerals with the petrographic microscope.
EPSC210 Introductory Mineralogy
Clino-Amphiboles (Monoclinic Amphiboles) A 0-1 B 2 C 5 T 8 O 22 (OH,F,Cl) 2 Presented by Joyleen Desai Paul Sandlin.
What happens when granite is weathered??
What if we had staurolite and andalusite together? What conditions would that indicate?
Orthoamphibole There are two common forms of orthoamphibole: Anthophyllite: (Mg,Fe) 2 (Mg,Fe) 5 SiO 22 (OH) 2 Gedrite: (Mg,Fe) 2 (Mg,Fe) 3 Al 2 [Al2Si6O.
The Minerals of Metamorphosed Mafic Rocks Mafic rocks generally have igneous protoliths: basalt and its coarse- grained equivalent, gabbro.
1 Rock Forming Silicate Minerals. 2 Importance of the Silicates Abundance –~25% of all known minerals –Make up ~90% of earth’s crust –Composed of dominant.
Orthosilicates Isolated tetrahedron Isolated tetrahedron Common examples Common examples Olivine, garnet, and zircon Olivine, garnet, and zircon Al 2 SiO.
Introduction to Mineralogy Dr
Aluminosilicate Minerals
Pyroxene.
What happens to our PROTOLITH when acted on by AGENTS OF CHANGE??
Magma Differentiate magma based on it’s chemical composition  felsic vs. mafic.
Introduction to Mineralogy, Second edition William D. Nesse Copyright © 2012, by Oxford University Press, Inc. CHAPTER 16 Orthosilicates.
Structure of the Silicate Minerals Comparing Crystal Structures to Visible Mineral Properties.
III. Atoms, Elements and Minerals
Mineralogy Minerals – chemical compounds that form naturally as solids with shapes determined by the arrangement of atoms, e.g., quartz (SiO2). Crystals.
Inosilicates (chain) Common Fe/Mg – bearing silicates
William D. Nesse Copyright © 2012, by Oxford University Press, Inc.
Composition of the Earth’s Crust
Sheet Silicates Abundant and common minerals throughout upper 20 km of crust Felsic to intermediate igneous, metamorphic, and sedimentary rocks All are.
Minerlaogi II Silikater.
Structure of the Silicate Minerals
Silicates are classified on the basis of Si-O polymerism
Minerals with isolated [SiO4]4- tetrahedra
Sheetsilicates There are many minerals with a sheet silicate structure, including mica and clay minerals. They share the same building units: (i) a tetrahedral.
MINERALOGY OF THE SILICATES
Silicates are classified on the basis of Si-O polymerism
Cyclosilicates Minerals with rings of tetrahedra T : O ratio = 1 : 3
Presentation transcript:

Minerlaogi II

Average Composition of the Continental Crust Weight PercentVolume Percent Si O O Table 3.4

Fig. 3.8 Ionic Radii of some geologically important ions

Silika Tetraederet

Silicates are classified on the basis of Si-O polymerism [SiO 4 ] 4- Independent tetrahedra Nesosilicates Examples: olivine garnet [Si 2 O 7 ] 6- Double tetrahedra Sorosilicates Examples: epidote n[SiO 3 ] 2- n = 3, 4, 6 Cyclosilicates Examples: benitoite BaTi[Si 3 O 9 ] axinite Ca 3 Al 2 BO 3 [Si 4 O 12 ]OH beryl Be 3 Al 2 [Si 6 O 18 ]

Silicates are classified on the basis of Si-O polymerism [SiO 3 ] 2- single chains Inosilicates [Si 4 O 11 ] 4- Double tetrahedra pyroxenes pyroxenoids amphiboles

Silicates are classified on the basis of Si-O polymerism [Si 2 O 5 ] 2- Sheets of tetrahedra Phyllosilicates micas talc clay minerals serpentine

Silicates are classified on the basis of Si-O polymerism [SiO 2 ] 3-D frameworks of tetrahedra: fully polymerized Tectosilicates quartz and the silica minerals feldspars feldspathoids zeolites low-quartz

Olivine: formed from single silica tetrahedra

Forsterite Mg 2 SiO 4 Fayalite Fe 2 SiO 4 Peridot - gem quality olivine This is a cut crystal An olivine nodule in a volcanic rock Olivine picture gallery

Nesosilicates: independent SiO 4 tetrahedra Olivine (100) view blue = M1 yellow = M2 b c projection

b c perspective Nesosilicates: independent SiO 4 tetrahedra

Olivine (001) view blue = M1 yellow = M2 M1 in rows and share edges M2 form layers in a-c that share corners Some M2 and M1 share edges b a Nesosilicates: independent SiO 4 tetrahedra

Olivine (100) view blue = M1 yellow = M2 b c M1 and M2 as polyhedra

Nesosilicates: independent SiO 4 tetrahedra Olivine Occurrences: –Principally in mafic and ultramafic igneous and meta-igneous rocks –Fayalite in meta-ironstones and in some alkalic granitoids –Forsterite in some siliceous dolomitic marbles Monticellite CaMgSiO 4 Ca  M2 (larger ion, larger site) High grade metamorphic siliceous carbonates

The garnet picture gallery

Nesosilicates: independent SiO 4 tetrahedra Garnet (001) view blue = Si purple = B turquoise = A Garnet: A 2+ 3 B 3+ 2 [SiO 4 ] 3 “Pyralspites” - B = Al Pyrope: Mg 3 Al 2 [SiO 4 ] 3 Almandine: Fe 3 Al 2 [SiO 4 ] 3 Spessartine: Mn 3 Al 2 [SiO 4 ] 3 “Ugrandites” - A = Ca Uvarovite: Ca 3 Cr 2 [SiO 4 ] 3 Grossularite: Ca 3 Al 2 [SiO 4 ] 3 Andradite: Ca 3 Fe 2 [SiO 4 ] 3 Occurrence: Mostly metamorphic Some high-Al igneous Also in some mantle peridotites

Nesosilicates: independent SiO 4 tetrahedra Garnet (001) view blue = Si purple = A turquoise = B Garnet: A 2+ 3 B 3+ 2 [SiO 4 ] 3 “Pyralspites” - B = Al Pyrope: Mg 3 Al 2 [SiO 4 ] 3 Almandine: Fe 3 Al 2 [SiO 4 ] 3 Spessartine: Mn 3 Al 2 [SiO 4 ] 3 “Ugrandites” - A = Ca Uvarovite: Ca 3 Cr 2 [SiO 4 ] 3 Grossularite: Ca 3 Al 2 [SiO 4 ] 3 Andradite: Ca 3 Fe 2 [SiO 4 ] 3 Occurrence: Mostly metamorphic Pyralspites in meta-shales Ugrandites in meta-carbonates Some high-Al igneous Also in some mantle peridotites a1a1a1a1 a2a2a2a2 a3a3a3a3

Fig Linking Silicate Tetrahedra

Chains (polymers) of silicate anions

Enkeltkjeder - eks. Diopside (en pyroxen-CaMgSi2O6)

Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) Diopside: CaMg [Si 2 O 6 ] b a sin  Where are the Si-O-Si-O chains??

Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b a sin 

Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b a sin 

Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b a sin 

Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b a sin 

Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b a sin 

Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) Perspective view

Inosilicates: single chains- pyroxenes TM1T Creates an “I-beam” like unit in the structure.

Inosilicates: single chains- pyroxenes TM1T Creates an “I-beam” like unit in the structure (+)

The pyroxene structure is then composed of alternating I-beams Clinopyroxenes have all I-beams oriented the same: all are (+) in this orientation (+) (+) (+) (+)(+) Inosilicates: single chains- pyroxenes Note that M1 sites are smaller than M2 sites, since they are at the apices of the tetrahedral chains

The pyroxene structure is then composed of alternation I-beams Clinopyroxenes have all I-beams oriented the same: all are (+) in this orientation (+) (+) (+) Inosilicates: single chains- pyroxenes (+) (+)

Pyroxene Chemistry The general pyroxene formula: W 1-P (X,Y) 1+P Z 2 O 6 Where –W = Ca Na –X = Mg Fe 2+ Mn Ni Li –Y = Al Fe 3+ Cr Ti –Z = Si Al Anhydrous so high-temperature or dry conditions favor pyroxenes over amphiboles

Pyroxene Chemistry The pyroxene quadrilateral and opx-cpx solvus Coexisting opx + cpx in many rocks (pigeonite only in volcanics) Diopside Hedenbergite Wollastonite Enstatite Ferrosilite orthopyroxenes clinopyroxenes pigeonite (Mg,Fe) 2 Si 2 O 6 Ca(Mg,Fe)Si 2 O 6 pigeonite clinopyroxenes orthopyroxenes Solvus 1200 o C 1000 o C 800 o C

Pyroxene Chemistry “Non-quad” pyroxenes Jadeite NaAlSi 2 O 6 Ca(Mg,Fe)Si 2 O 6 Aegirine NaFe 3+ Si 2 O 6 Diopside-Hedenbergite Ca-Tschermack’s molecule CaAl2SiO 6 Ca / (Ca + Na) Omphacite aegirine- augite Augite Spodumene: LiAlSi 2 O 6

Inosilicates: double chains- amphiboles Tremolite (001) view blue = Si purple = M1 rose = M2 gray = M3 (all Mg) yellow = M4 (Ca) Tremolite: Ca 2 Mg 5 [Si 8 O 22 ] (OH) 2 b a sin 

Inosilicates: double chains- amphiboles Hornblende: (Ca, Na) 2-3 (Mg, Fe, Al) 5 [(Si,Al) 8 O 22 ] (OH) 2 b a sin  Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H

Inosilicates: double chains- amphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) Hornblende: (Ca, Na) 2-3 (Mg, Fe, Al) 5 [(Si,Al) 8 O 22 ] (OH) 2 Same I-beam architecture, but the I-beams are fatter (double chains)

Inosilicates: double chains- amphiboles b a sin  (+) (+) (+) (+) (+) Same I-beam architecture, but the I-beams are fatter (double chains) All are (+) on clinoamphiboles and alternate in orthoamphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H Hornblende: (Ca, Na) 2-3 (Mg, Fe, Al) 5 [(Si,Al) 8 O 22 ] (OH) 2

Inosilicates Cleavage angles can be interpreted in terms of weak bonds in M2 sites (around I-beams instead of through them) Narrow single-chain I-beams  90 o cleavages in pyroxenes while wider double- chain I-beams  o cleavages in amphiboles pyroxeneamphibole a b

Cleavage in the Chain Silicates Fig Pyroxene Amphibole

See handout for more information General formula: W 0-1 X 2 Y 5 [Z 8 O 22 ] (OH, F, Cl) 2 W = Na K X = Ca Na Mg Fe 2+ (Mn Li) Y = Mg Fe 2+ Mn Al Fe 3+ Ti Z = Si Al Again, the great variety of sites and sizes  a great chemical range, and hence a broad stability range The hydrous nature implies an upper temperature stability limit Amphibole Chemistry

Ca-Mg-Fe Amphibole “quadrilateral” (good analogy with pyroxenes) Amphibole Chemistry Al and Na tend to stabilize the orthorhombic form in low-Ca amphiboles, so anthophyllite  gedrite orthorhombic series extends to Fe-rich gedrite in more Na-Al-rich compositions Tremolite Ca 2 Mg 5 Si 8 O 22 (OH) 2 Ferroactinolite Ca 2 Fe 5 Si 8 O 22 (OH) 2 Anthophyllite Mg 7 Si 8 O 22 (OH) 2 Fe 7 Si 8 O 22 (OH) 2 Actinolite Cummingtonite-grunerite Orthoamphiboles Clinoamphiboles

Hornblende has Al in the tetrahedral site Geologists traditionally use the term “hornblende” as a catch-all term for practically any dark amphibole. Now the common use of the microprobe has petrologists casting “hornblende” into end-member compositions and naming amphiboles after a well-represented end-member. Sodic amphiboles Glaucophane: Na 2 Mg 3 Al 2 [Si 8 O 22 ] (OH) 2 Riebeckite: Na 2 Fe 2+ 3 Fe 3+ 2 [Si 8 O 22 ] (OH) 2 Sodic amphiboles are commonly blue, and often called “blue amphiboles” Amphibole Chemistry

Tremolite (Ca-Mg) occurs in meta-carbonates Actinolite occurs in low-grade metamorphosed basic igneous rocks Orthoamphiboles and cummingtonite-grunerite (all Ca-free, Mg-Fe-rich amphiboles) are metamorphic and occur in meta-ultrabasic rocks and some meta-sediments. The Fe-rich grunerite occurs in meta-ironstones The complex solid solution called hornblende occurs in a broad variety of both igenous and metamorphic rocks Sodic amphiboles are predominantly metamorphic where they are characteristic of high P/T subduction-zone metamorphism (commonly called “blueschist” in reference to the predominant blue sodic amphiboles Riebeckite occurs commonly in sodic granitoid rocks Amphibole Occurrences

SiO 4 tetrahedra polymerized into 2-D sheets: [Si 2 O 5 ] Apical O’s are unpolymerized and are bonded to other constituents Phyllosilicates

Tetrahedral layers are bonded to octahedral layers (OH) pairs are located in center of T rings where no apical O Phyllosilicates

Octahedral layers can be understood by analogy with hydroxides Phyllosilicates Brucite: Mg(OH) 2 Layers of octahedral Mg in coordination with (OH) Large spacing along c due to weak van der waals bonds c

Phyllosilicates Gibbsite: Al(OH) 3 Layers of octahedral Al in coordination with (OH) Al 3+ means that only 2/3 of the VI sites may be occupied for charge-balance reasons Brucite-type layers may be called trioctahedral and gibbsite-type dioctahedral a1a1a1a1 a2a2a2a2

Phyllosilicates Kaolinite: Al 2 [Si 2 O 5 ] (OH) 4 T-layers and diocathedral (Al 3+ ) layers (OH) at center of T-rings and fill base of VI layer  Yellow = (OH) TO-TO-TOTO-TO-TOTO-TO-TOTO-TO-TO vdw vdw weak van der Waals bonds between T-O groups

Phyllosilicates Serpentine: Mg 3 [Si 2 O 5 ] (OH) 4 T-layers and triocathedral (Mg 2+ ) layers (OH) at center of T-rings and fill base of VI layer  Yellow = (OH) TO-TO-TOTO-TO-TOTO-TO-TOTO-TO-TO vdw vdw weak van der Waals bonds between T-O groups

Serpentine Octahedra are a bit larger than tetrahedral match, so they cause bending of the T-O layers (after Klein and Hurlbut, 1999). Antigorite maintains a sheet-like form by alternating segments of opposite curvature Chrysotile does not do this and tends to roll into tubes

Serpentine The rolled tubes in chrysotile resolves the apparent paradox of asbestosform sheet silicates S = serpentine T = talc Nagby and Faust (1956) Am. Mineralogist 41, Veblen and Busek, 1979, Science 206,

Phyllosilicates Pyrophyllite: Al 2 [Si 4 O 10 ] (OH) 2 T-layer - diocathedral (Al 3+ ) layer - T-layer TOT-TOT-TOTTOT-TOT-TOTTOT-TOT-TOTTOT-TOT-TOT vdw vdw weak van der Waals bonds between T - O - T groups Yellow = (OH)

Phyllosilicates Talc: Mg 3 [Si 4 O 10 ] (OH) 2 T-layer - triocathedral (Mg 2+ ) layer - T-layer TOT-TOT-TOTTOT-TOT-TOTTOT-TOT-TOTTOT-TOT-TOT vdw vdw weak van der Waals bonds between T - O - T groups Yellow = (OH)

Phyllosilicates Muscovite: K Al 2 [Si 3 AlO 10 ] (OH) 2 (coupled K - Al IV ) T-layer - diocathedral (Al 3+ ) layer - T-layer - K TOTKTOTKTOTTOTKTOTKTOTTOTKTOTKTOTTOTKTOTKTOT K between T - O - T groups is stronger than vdw

Phyllosilicates Phlogopite: K Mg 3 [Si 3 AlO 10 ] (OH) 2 T-layer - triocathedral (Mg 2+ ) layer - T-layer - K TOTKTOTKTOTTOTKTOTKTOTTOTKTOTKTOTTOTKTOTKTOT K between T - O - T groups is stronger than vdw

A Summary of Phyllosilicate Structures Phyllosilicates Fig Klein and Hurlbut Manual of Mineralogy, © John Wiley & Sons

Fig Clay: a sheet silicate

Chlorite: (Mg, Fe) 3 [(Si, Al) 4 O 10 ] (OH) 2 (Mg, Fe) 3 (OH) 6 = T - O - T - (brucite) - T - O - T - (brucite) - T - O - T - Very hydrated (OH) 8, so low-temperature stability (low-T metamorphism and alteration of mafics as cool) Phyllosilicates

Why are there single-chain-, double-chain-, and sheet-polymer types, and not triple chains, quadruple chains, etc?? “Biopyriboles”

It turns out that there are some intermediate types, predicted by J.B. Thompson and discovered in 1977 Veblen, Buseck, and Burnham Cover of Science: anthophyllite (yellow) reacted to form chesterite (blue & green) and jimthompsonite (red) Streaked areas are highly disordered “Biopyriboles” Cover of Science, October 28, 1977 © AAAS

HRTEM image of anthophyllite (left) with typical double-chain width Jimthompsonite (center) has triple-chains Chesterite is an ordered alternation of double- and triple-chains anthophyllite jimthompsonite chesterite Fig. 6, Veblen et al (1977) Science 198 © AAAS

Disordered structures show 4-chain widths and even a 7-chain width Obscures the distinction between pyroxenes, amphiboles, and micas (hence the term biopyriboles: biotite-pyroxene-amphibole) “Biopyriboles” Fig. 7, Veblen et al (1977) Science 198 © AAAS

Tectosilicates After Swamy and Saxena (1994) J. Geophys. Res., 99, 11,787-11,794.

Tectosilicates Low Quartz 001 Projection Crystal Class 32

Tectosilicates High Quartz at 581 o C 001 Projection Crystal Class 622

Tectosilicates Cristobalite 001 Projection Cubic Structure

Tectosilicates Stishovite High pressure  Si VI

Tectosilicates Low Quartz Stishovite Si IV Si VI

Quartz structure

Fig Banded Agate

Fig Green Feldspar

Feltspat

Ortoklas/Mikroklin Albitt Anortitt

Avblanding av feltspat ved avkjøling

Plagioklas Kalifeltspat (mikroklin)

Tectosilicates Feldspars Albite: NaAlSi 3 O 8 Substitute two Al 3+ for Si 4+ allows Ca 2+ to be added Substitute Al 3+ for Si 4+ allows Na + or K + to be added