Object Detection Overview Viola-Jones Dalal-Triggs Deformable models Deep learning.

Slides:



Advertisements
Similar presentations
Jan-Michael Frahm, Enrique Dunn Spring 2013
Advertisements

Classification using intersection kernel SVMs is efficient Joint work with Subhransu Maji and Alex Berg Jitendra Malik UC Berkeley.
Recap: Advanced Feature Encoding Bag of Visual Words is only about counting the number of local descriptors assigned to each Voronoi region (0 th order.
Crash Course on Machine Learning Part IV Several slides from Derek Hoiem, and Ben Taskar.
Computer Vision for Human-Computer InteractionResearch Group, Universität Karlsruhe (TH) cv:hci Dr. Edgar Seemann 1 Computer Vision: Histograms of Oriented.
Lecture 31: Modern object recognition
Many slides based on P. FelzenszwalbP. Felzenszwalb General object detection with deformable part-based models.
AdaBoost & Its Applications
Object Category Detection: Sliding Windows Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 04/10/12.
Face detection Many slides adapted from P. Viola.
Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li) Thanks to Fei-Fei Li,
EE462 MLCV Lecture 5-6 Object Detection – Boosting Tae-Kyun Kim.
Viola/Jones: features “Rectangle filters” Differences between sums of pixels in adjacent rectangles { y t (x) = +1 if h t (x) >  t -1 otherwise Unique.
Detecting Pedestrians by Learning Shapelet Features
More sliding window detection: Discriminative part-based models Many slides based on P. FelzenszwalbP. Felzenszwalb.
The Viola/Jones Face Detector Prepared with figures taken from “Robust real-time object detection” CRL 2001/01, February 2001.
The Viola/Jones Face Detector (2001)
Object Category Detection: Statistical Templates Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 04/14/15.
1 Learning to Detect Objects in Images via a Sparse, Part-Based Representation S. Agarwal, A. Awan and D. Roth IEEE Transactions on Pattern Analysis and.
Generic Object Detection using Feature Maps Oscar Danielsson Stefan Carlsson
Robust Real-time Object Detection by Paul Viola and Michael Jones ICCV 2001 Workshop on Statistical and Computation Theories of Vision Presentation by.
Object Detection using Histograms of Oriented Gradients
Face Detection CSE 576. Face detection State-of-the-art face detection demo (Courtesy Boris Babenko)Boris Babenko.
Generic object detection with deformable part-based models
Face Detection using the Viola-Jones Method
Object Recognizing. Recognition -- topics Features Classifiers Example ‘winning’ system.
“Secret” of Object Detection Zheng Wu (Summer intern in MSRNE) Sep. 3, 2010 Joint work with Ce Liu (MSRNE) William T. Freeman (MIT) Adam Kalai (MSRNE)
Object Detection Using the Statistics of Parts Presented by Nicholas Chan – Advanced Perception Robust Real-time Object Detection Henry Schneiderman.
Window-based models for generic object detection Mei-Chen Yeh 04/24/2012.
Marco Pedersoli, Jordi Gonzàlez, Xu Hu, and Xavier Roca
Lecture 29: Face Detection Revisited CS4670 / 5670: Computer Vision Noah Snavely.
Face detection Slides adapted Grauman & Liebe’s tutorial
Visual Object Recognition
Object Detection with Discriminatively Trained Part Based Models
Lecture 31: Modern recognition CS4670 / 5670: Computer Vision Noah Snavely.
Deformable Part Model Presenter : Liu Changyu Advisor : Prof. Alex Hauptmann Interest : Multimedia Analysis April 11 st, 2013.
Deformable Part Models (DPM) Felzenswalb, Girshick, McAllester & Ramanan (2010) Slides drawn from a tutorial By R. Girshick AP 12% 27% 36% 45% 49% 2005.
Recognition II Ali Farhadi. We have talked about Nearest Neighbor Naïve Bayes Logistic Regression Boosting.
Object Category Detection: Sliding Windows Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 03/18/10.
Object detection, deep learning, and R-CNNs
Adaboost and Object Detection Xu and Arun. Principle of Adaboost Three cobblers with their wits combined equal Zhuge Liang the master mind. Failure is.
Methods for classification and image representation
Lecture 09 03/01/2012 Shai Avidan הבהרה: החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
The Viola/Jones Face Detector A “paradigmatic” method for real-time object detection Training is slow, but detection is very fast Key ideas Integral images.
CS 1699: Intro to Computer Vision Detection II: Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 12, 2015.
Learning to Detect Faces A Large-Scale Application of Machine Learning (This material is not in the text: for further information see the paper by P.
Pedestrian Detection Histograms of Oriented Gradients for Human Detection Navneet Dalal and Bill Triggs CVPR ‘05 Pete Barnum March 8, 2006.
Object Recognizing. Object Classes Individual Recognition.
Statistical Template-Based Object Detection A Statistical Method for 3D Object Detection Applied to Faces and Cars Henry Schneiderman and Takeo Kanade.
More sliding window detection: Discriminative part-based models
Object Recognizing. Object Classes Individual Recognition.
Fine-grained Fine-grained Recognition( 细粒度分类 ) 沈志强.
Face detection Many slides adapted from P. Viola.
Rich feature hierarchies for accurate object detection and semantic segmentation 2014 IEEE Conference on Computer Vision and Pattern Recognition Ross Girshick,
Recent developments in object detection
Cascade for Fast Detection
Object detection with deformable part-based models
Presented by Minh Hoai Nguyen Date: 28 March 2007
Lit part of blue dress and shadowed part of white dress are the same color
Object detection, deep learning, and R-CNNs
Recap: Advanced Feature Encoding
Object detection as supervised classification
R-CNN region By Ilia Iofedov 11/11/2018 BGU, DNN course 2016.
Introduction of Pedestrian Detection
HOGgles Visualizing Object Detection Features
An HOG-LBP Human Detector with Partial Occlusion Handling
Pedestrian Detection Histograms of Oriented Gradients for Human Detection Navneet Dalal and Bill Triggs CVPR ‘05 Pete Barnum March 8, 2006.
Pedestrian Detection Histograms of Oriented Gradients for Human Detection Navneet Dalal and Bill Triggs CVPR ‘05 Pete Barnum March 8, 2006.
Outline Background Motivation Proposed Model Experimental Results
RCNN, Fast-RCNN, Faster-RCNN
Presentation transcript:

Object Detection Overview Viola-Jones Dalal-Triggs Deformable models Deep learning

Recap: Viola-Jones sliding window detector Fast detection through two mechanisms Quickly eliminate unlikely windows Use features that are fast to compute Viola and Jones. Rapid Object Detection using a Boosted Cascade of Simple Features (2001).Rapid Object Detection using a Boosted Cascade of Simple Features

Cascade for Fast Detection Examples Stage 1 H 1 (x) > t 1 ? Reject No Yes Stage 2 H 2 (x) > t 2 ? Stage N H N (x) > t N ? Yes … Pass Reject No Reject No Choose threshold for low false negative rate Fast classifiers early in cascade Slow classifiers later, but most examples don’t get there

Features that are fast to compute “Haar-like features” – Differences of sums of intensity – Thousands, computed at various positions and scales within detection window Two-rectangle featuresThree-rectangle featuresEtc. +1

Integral Images ii = cumsum(cumsum(im, 1), 2) x, y ii(x,y) = Sum of the values in the grey region SUM within Rectangle D is ii(4) - ii(2) - ii(3) + ii(1)

Feature selection with Adaboost Create a large pool of features (180K) Select features that are discriminative and work well together – “Weak learner” = feature + threshold + parity – Choose weak learner that minimizes error on the weighted training set – Reweight

Adaboost

Viola-Jones details 38 stages with 1, 10, 25, 50 … features – 6061 total used out of 180K candidates – 10 features evaluated on average Training Examples – 4916 positive examples – negative examples collected after each stage Scanning – Scale detector rather than image – Scale steps = 1.25 (factor between two consecutive scales) – Translation 1*scale (# pixels between two consecutive windows) Non-max suppression: average coordinates of overlapping boxes Train 3 classifiers and take vote

Viola Jones Results MIT + CMU face dataset Speed = 15 FPS (in 2001)

Object Detection Overview Viola-Jones Dalal-Triggs Deformable models Deep learning

Statistical Template Object model = sum of scores of features at fixed positions = = 10.5 > 7.5 ? ? Non-object Object

Design challenges How to efficiently search for likely objects Even simple models require searching hundreds of thousands of positions and scales Feature design and scoring How should appearance be modeled? What features correspond to the object? How to deal with different viewpoints? Often train different models for a few different viewpoints Implementation details Window size Aspect ratio Translation/scale step size Non-maxima suppression

Example: Dalal-Triggs pedestrian detector 1.Extract fixed-sized (64x128 pixel) window at each position and scale 2.Compute HOG (histogram of gradient) features within each window 3.Score the window with a linear SVM classifier 4.Perform non-maxima suppression to remove overlapping detections with lower scores Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Tested with – RGB – LAB – Grayscale Gamma Normalization and Compression – Square root – Log Slightly better performance vs. grayscale Very slightly better performance vs. no adjustment

uncentered centered cubic-corrected diagonal Sobel Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 Outperforms

Histogram of gradient orientations – Votes weighted by magnitude – Bilinear interpolation between cells Orientation: 9 bins (for unsigned angles ) Histograms in k x k pixel cells Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Normalize with respect to surrounding cells Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

X= Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 # features = 15 x 7 x 9 x 4 = 3780 # cells # orientations # normalizations by neighboring cells Original Formulation

X= Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 # features = 15 x 7 x 9 x 4 = 3780 # cells # orientations # normalizations by neighboring cells # features = 15 x 7 x (3 x 9) + 4 = 3780 # cells # orientations magnitude of neighbor cells UoCTTI variant Original Formulation

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05 pos w neg w

pedestrian Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Pedestrian detection with HOG Train a pedestrian template using a linear support vector machine At test time, convolve feature map with template Find local maxima of response For multi-scale detection, repeat over multiple levels of a HOG pyramid N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005Histograms of Oriented Gradients for Human Detection Template HOG feature mapDetector response map

Something to think about… Sliding window detectors work – very well for faces – fairly well for cars and pedestrians – badly for cats and dogs Why are some classes easier than others?

Strengths and Weaknesses of Statistical Template Approach Strengths Works very well for non-deformable objects with canonical orientations: faces, cars, pedestrians Fast detection Weaknesses Not so well for highly deformable objects or “stuff” Not robust to occlusion Requires lots of training data

Tricks of the trade Details in feature computation really matter – E.g., normalization in Dalal-Triggs improves detection rate by 27% at fixed false positive rate Template size – Typical choice is size of smallest detectable object “Jittering” to create synthetic positive examples – Create slightly rotated, translated, scaled, mirrored versions as extra positive examples Bootstrapping to get hard negative examples 1.Randomly sample negative examples 2.Train detector 3.Sample negative examples that score > -1 4.Repeat until all high-scoring negative examples fit in memory

Things to remember Sliding window for search Features based on differences of intensity (gradient, wavelet, etc.) – Excellent results require careful feature design Boosting for feature selection Integral images, cascade for speed Bootstrapping to deal with many, many negative examples Examples Stage 1 H 1 (x) > t 1 ? Reject No Yes Stage 2 H 2 (x) > t 2 ? Stage N H N (x) > t N ? Yes … Pass Reject No Reject No

Many slides from Lana Lazebnik based on P. FelzenszwalbP. Felzenszwalb Generic object detection with deformable part-based models

Challenge: Generic object detection

Histograms of oriented gradients (HOG) Partition image into blocks at multiple scales and compute histogram of gradient orientations in each block N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005Histograms of Oriented Gradients for Human Detection 10x10 cells 20x20 cells Image credit: N. Snavely

Histograms of oriented gradients (HOG) Partition image into blocks at multiple scales and compute histogram of gradient orientations in each block N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005Histograms of Oriented Gradients for Human Detection Image credit: N. Snavely

Pedestrian detection with HOG Train a pedestrian template using a linear support vector machine N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005Histograms of Oriented Gradients for Human Detection positive training examples negative training examples

Are we done? Single rigid template usually not enough to represent a category Many objects (e.g. humans) are articulated, or have parts that can vary in configuration Many object categories look very different from different viewpoints, or from instance to instance Slide by N. Snavely

Discriminative part-based models P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with Discriminatively Trained Part Based Models, PAMI 32(9), 2010Object Detection with Discriminatively Trained Part Based Models Root filter Part filters Deformation weights

Discriminative part-based models P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with Discriminatively Trained Part Based Models, PAMI 32(9), 2010Object Detection with Discriminatively Trained Part Based Models Multiple components

Discriminative part-based models P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection with Discriminatively Trained Part Based Models, PAMI 32(9), 2010Object Detection with Discriminatively Trained Part Based Models

Object hypothesis Multiscale model: the resolution of part filters is twice the resolution of the root

Scoring an object hypothesis The score of a hypothesis is the sum of filter scores minus the sum of deformation costs Filters Subwindow features Deformation weights Displacements

Scoring an object hypothesis The score of a hypothesis is the sum of filter scores minus the sum of deformation costs Concatenation of filter and deformation weights Concatenation of subwindow features and displacements Filters Subwindow features Deformation weights Displacements

Detection Define the score of each root filter location as the score given the best part placements:

Detection Define the score of each root filter location as the score given the best part placements: Efficient computation: generalized distance transforms For each “default” part location, find the score of the “best” displacement Head filter Deformation cost

Detection Define the score of each root filter location as the score given the best part placements: Efficient computation: generalized distance transforms For each “default” part location, find the score of the “best” displacement Head filter responsesDistance transform Head filter

Detection

Detection result

Training Training data consists of images with labeled bounding boxes Need to learn the filters and deformation parameters

Training Our classifier has the form w are model parameters, z are latent hypotheses Latent SVM training: Initialize w and iterate: Fix w and find the best z for each training example (detection) Fix z and solve for w (standard SVM training) Issue: too many negative examples Do “data mining” to find “hard” negatives

Car model Component 1 Component 2

Car detections

Person model

Person detections

Cat model

Cat detections

Bottle model

More detections

Quantitative results (PASCAL 2008) 7 systems competed in the 2008 challenge Out of 20 classes, first place in 7 classes and second place in 8 classes BicyclesPersonBird Proposed approach

Detection state of the art Object detection system overview. Our system (1) takes an input image, (2) extracts around 2000 bottom-up region proposals, (3) computes features for each proposal using a large convolutional neural network (CNN), and then (4) classifies each region using class-specific linear SVMs. R-CNN achieves a mean average precision (mAP) of 53.7% on PASCAL VOC For comparison, Uijlings et al. (2013) report 35.1% mAP using the same region proposals, but with a spatial pyramid and bag-of-visual- words approach. The popular deformable part models perform at 33.4%. R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR 2014, to appear.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation