Study of a charge distribution on a readout board with a triple GEM chamber MPGD group T. Uchida, M. Sekimoto, T. Murakami, M. Tanaka, S. Tanaka, N. Ujiie,

Slides:



Advertisements
Similar presentations
GEM Chambers at BNL The detector from CERN, can be configured with up to 4 GEMs The detector for pad readout and drift studies, 2 GEM maximum.
Advertisements

Cosmic Ray Test of GEM- MPI/TPC in Magnetic Field Hiroshima University Kuroiwa CDC Group Mar
Present Status of GEM Detector Development for Position Counter 1.Introduction 2.GEM 3.Readout Board 4.Fabrication Test 5.Large GEM 6.Readout Electronics.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
D. Peterson, “The Cornell/Purdue TPC”, LCWS05, Stanford, 21-March The Cornell/Purdue TPC Information available at the web site:
D. Peterson, “ILC Detector Work”, Cornell Group Meeting, 4-October ILC Detector Work This project is supported by the US National Science Foundation.
D. Peterson, “The Cornell/Purdue TPC”, ALCPG, Snowmass, 23-August The Cornell/Purdue TPC Information available at the web site:
RF test of the GEM detector prototipe Detector description RF test area (LINAC3) detector working conditions RF field measurement Detector measurements.
July 2003American Linear Collider Workshop Cornell U. Development of GEM-based Digital Hadron Calorimetry Andy White U.Texas at Arlington (for J.Yu, J.Li,
Gain measurements of Triple Gas Electron Multiplier (GEM) detector with zigzag readout strips V. BHOPATKAR, E. ESPOSITO, E. HANSEN, J. TWIGGER M. HOHLMANN.
Activity for GEM in KEK Detector Technology Project MPGD group M. Sekimoto, T. Murakami, M. Tanaka, S. Tanaka, N. Ujiie, and K. Nakayoshi (KEK) T. Uchida.
Basic characteristic of 100 μ mGEM K,Kadomatsu ( saga.u) 池野正弘、宇野彰二、内田智久、氏家宣彦、関本美智子、 田中秀治、田中真伸、仲吉一男、村上武( KEK) 青座篤史、杉山晃(佐賀大) 中野英一、中川伸介(大阪市大) 杉山史憲(東京理科大)
Chamber parameters that we can modify and that affect the rising time Number of ionisation clusters produced in the drift gap: Poisson Distribution Probability.
Atsuhiko Ochi Kobe University 25/06/2013 New Small Wheel MicroMegas Mechanics and layout Workshop.
Atsuhiko Ochi, Yuki Edo, Yousuke Kataoka ATLAS MicroMEGAS meeting, 11/12/12.
1 Small GEM Detectors at STAR Yi Zhou University of Science & Technology of China.
IHEP, Bejing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
Chevron / Zigzag Pad Designs for Gas Trackers
15/07/2010Rui De Oliveira1 Update on large size GEM manufacturing Rui de Oliveira.
Beam Test June 2010 CMS SUMMARY REPORT 1 Stefano Colafranceschi.
Development of a Time Projection Chamber Using Gas Electron Multipliers (GEM-TPC) Susumu Oda, H. Hamagaki, K. Ozawa, M. Inuzuka, T. Sakaguchi, T. Isobe,
Stanford, Mar 21, 2005P. Colas - Micromegas TPC1 Results from a Micromegas TPC Cosmic Ray Test Berkeley-Orsay-Saclay Progress Report Reminder: the Berkeley-Orsay-
Orsay, January 12, 2005P. Colas - Resistive anode Micromegas1 Dan Burke 1, P. Colas 2, M. Dixit 1, I. Giomataris 2, V. Lepeltier 3, A. Rankin 1, K. Sachs.
Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????
Test Beam the μ-RWELL Test Beam the μ-RWELL G. Bencivenni (a), R. de Oliveira (b), M. Gatta (a), G. Felici (a), G. Morello (a), M. Poli Lener (a) (a),
Update on TPC R&D C. Woody BNL DC Upgrades Meeting October 9, 2003.
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
TPC PAD Optimization Yukihiro Kato (Kinki Univ.) 1.Motivation 2.Simple Monte Carlo simulation 3.PAD response 4.PAD response for two tracks 5.Summary &
Beijing, Feb.6, 2007 P. Colas - Micromegas TPC 1 Micromegas TPC studies in a 5 Tesla magnetic field with a resistive readout D. Attié, A. Bellerive, K.
Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,
2007 Oct 24 Simulation Study of GEM Gating for LC TPC Akimasa Ishikawa (Saga University) LCTPC Asia Group Saga : A. Aoza, T. Higashi, A. Sugiyama, H. Tsuji.
5 th RD51 meeting (WG1) 25 May 2009 Atsuhiko Ochi ( Kobe University )
1 IBF in aligned, misaligned and FLOWER THGEMs The IBF problem Standard THGEM configuration COBRA and extra electrode Misaligned holes FLOWER THGEM solution.
12/12/09 MPGD 神戸大学 1 Yusuke Komatsu A B. Azmoun B, C. Woody B, K. Ozawa A University of Tokyo A,Brook Haven National Lab. B.
M. Bianco On behalf of the ATLAS Collaboration
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
1/18 01/26/2007MPGD Workshop in Saga (Yorito Yamaguchi, CNS, Univ. of Tokyo) 東大 CNS における GEM の基本動 作特性の研究 Measurement of basic properties of GEM at CNS,
Study of GEM Structures for a TPC Readout M. Killenberg, S. Lotze, J. Mnich, A. Münnich, S. Roth, M. Weber RWTH Aachen October 2003.
IHEP, Beijing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
Plans for MPGD Radiation hardness tests for full detectors and components Matteo Alfonsi,Gabriele Croci, Elena Rocco, Serge Duarte Pinto, Leszek Ropelewski.
Wenxin Wang 105/04/2013. L: 4.7m  : 3.6m Design for an ILD TPC in progress: Each endplate: 80 modules with 8000 pads Spatial Resolution (in a B=3.5T.
2007 Oct 21 GEM Panel for LP1 Akimasa Ishikawa (Saga University) For CDC group.
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
The Preliminary Test and Plans of GEM Detector in Tsinghua Rensheng Wang ( 王仁生 ) Tsinghua U. ( 清华大学 ) The Third Workshop on Haron Physics in China and.
Simulation study of Ion Back Flow for the ALICE-TPC upgrade Taku Gunji Center for Nuclear Study University of Tokyo 1 RD51 Collaboration Meeting at SUNY,
Electron Transmission Measurement of GEM Gate Hirotoshi KUROIWA (Saga Univ.) Collaboration with KEK, TUAT, Kogakuin U, Kinki U, Saga U Introduction Motivation.
Construction and Characterization of a GEM G.Bencivenni, LNF-INFN The lesson is divided in two main parts: 1 - construction of a GEM detector (Marco Pistilli)
Report on very preliminary measurements of 10x10cm 2 Triple-GEM detectors with New Single Mask technique Overview Hole geometry Experimental setup Transparency.
Yulan Li, Tsinghua Uni. TILC08, 3-6 March, 2008, Sendai, Japan Performance Study of TU-TPC Prototype Using Cosmic-ray  Tsinghua University TPC group 
Development of two-dimensional gaseous detector for energy-selective radiography Shoji Uno (KEK-DTP) TIPP2011 Chicago, USA June 10, 2011  Introduction.
J-PARC での高輝度 ビームに向けた GEM トラッカーの 開発 小沢 恭一郎 ( 東大・理 ) KEK 測定器開発室 Supported by 科研費.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
1 Fulvio TESSAROTTO GDD meeting, CERN, 01/10/2008 Trieste THGEM news New THGEM test in the COMPASS hall New THGEM test in the COMPASS hall Preparation.
Single GEM Measurement Matteo Alfonsi,Gabriele Croci and Bat-El Pinchasik June 25 th 2008 GDD Meeting 1.
Update on THGEM project for RICH application Elena Rocco University of Eastern Piedmont & INFN Torino On behalf of an Alessandria-CERN-Freiburg-Liberec-
R&D Collaboration, CERN – September 10, Micromegas Performance and Ageing studies David Attié MPGD. Towards an R&D Collaboration,
GEM-MSTPC for direct measurements of astrophysical reaction rates H. Ishiyama 1, K. Yamaguchi 2, Y. Mizoi 3, Y.X. Watanabe 1, T. Hashimoto 4, M.H. Tanaka.
GEM and MicroMegas R&D Xiaomei Li Science and Technology
Activity of CERN and LNF Groups on Large Area GEM Detectors
some thoughts on charging-up effects
IBF studies of triple and quadruple GEM for the ALICE TPC upgrade
Saikat Biswas, A. Abuhoza, U. Frankenfeld, C. Garabatos,
Single GEM Measurement
Updates on the Micromegas + GEM prototype
THGEM: Introduction to discussion on UV-detector parameters for RICH
Development of Hard X-ray Detector with GEM
MPGD, May, 2017 Temple University
Development of GEM at CNS
Development of gating foils using FPC production techniques
Pre-installation Tests of the LHCb Muon Chambers
Presentation transcript:

Study of a charge distribution on a readout board with a triple GEM chamber MPGD group T. Uchida, M. Sekimoto, T. Murakami, M. Tanaka, S. Tanaka, N. Ujiie, and K. Nakayoshi (KEK) K. Kadomatsu and A. Sugiyama (Saga University ) E. Nakano and S. Nakagawa (Osaka City University) Shoji Uno (KEK) KEK Detector Technology Project October 31 st, 2006

Contents GEM foils made by Japanese company Effective Gas gain as a function of various parameters  V GEM, E D, E T,E I, g I Gas mixture: Ar-CH 4 (90/10) (P10) Ar-CO 2 (70/30) Charge distribution on a readout board

GEM foils made by Japanese company New method (plasma etching) was tried in a few years ago. –Not chemical etching (CERN) –M. Inuzuka, et al., NIM A 525(2004) Plasma + Laser –To reduce sparks It is convenient for us to make new types of GEM foils. –Fine pitch/small hole : 50  m/30  m –Thicker/thinner : 100(150)  m/ 25  m –Other activities in Japan Univ. of Tokyo RIKEN etc Today, I will report on results with standard GEM foils. –50  m thick –140  m pitch 70  m diameter 10cm Scienergy Co., Ltd. (Japanese company)

Chamber Structure g I (1 mm) g D ( 4 mm) GEM1 GEM2 GEM3 g T2 (2 mm) g T1 (2 mm) 55 Fe (5.9 keV X-ray) Cathode Strip 0.5kV/cm 1.75kV/cm 3.5kV/cm Drift region Transfer1 region Transfer2 region Induction region Ar-CO 2 ΔV GEM = 370V P10 ΔV GEM = 330V

Effective gas gain vs ΔV GEM Ar-CO 2 P10

Gas gain vs various parameters P10 Ar-CO 2 P10 Ar-CO 2 EDED EIEI ETET EIEI

Readout strip –Strip pitch : 200  m –width : 100  m –gap : 100  m –length : 50mm –Number of strips = 64 Zoom up view 100  m 200  m

Read out system RPN220× 4 ADC 2249W× 6 CCNET GATE BUSY Fanin Fanout Gate Gen. GATE 120 μs delay VETO Disc. RPN220 Belle-CDC Pre-amp. ×4 Belle-CDC Pre-amp. 30 m 0.5 m Strip Foil Pulse Trans. CAMAC System

One Event Display Channel ADC 0 63 ADC 0 63 Channel

ΔV GEM = 370V Ed= 0.5 kV/cm Et=2.59kV/cm Ei=5.18 kV/cm ΔV GEM = 370V Ed= 0.5 kV/cm Et=2.59kV/cm Ei=5.18 kV/cm  = 181.2± 0.3  m Ar-CO 2 (70/30) Charge distribution Triple GEM g D, g T1, g T2, g I =1.5, 1, 1, 1mm dX ( each strip - COG) mm  = 359.7±0.4  m P10 ΔV GEM = 330V Ed= 0.5 kV/cm Et=1.65 kV/cm Ei= 3.3 kV/cm ΔV GEM = 330V Ed= 0.5 kV/cm Et=1.65 kV/cm Ei= 3.3 kV/cm ADC SUMADC

Measurement results  for a gauss fit in a charge distribution Unit : mm GEM structureTotal gapP10Ar-CO 2 Tripleg D,g T1,g T2,g I = 4, 2, 2, g D,g T1,g T2,g I = 1.5, 2, 2, g D,g T1,g T2,g I = 1.5, 1, 1, g D,g T1,g T2,g I = 1.5, 1, 1, Doubleg D,g T1,g I = 1.5, 2, g D,g T1,g I = 1.5, 1, Total gap : g D /2 + (g T1 + g T2 ) + g I

P10 Ar-CO 2 Data MagBoltz  2 (mm 2 )

MagBoltz vs. Measurement Data P10 Ar-CO 2 Data MagBoltz Electric field in transfer region (kV/cm)

Summary Japanese company can produce GEM foils with new methods ( Plasma or (and) Laser ). GEM chamber has been constructed and tested. Effective gas gain was measured for various parameters. Charge distribution was measured. It is consistent with naive estimation from diffusion without GEM structure.