Generalized TMDs of the Proton Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Mainz U. & INFN, Pavia.

Slides:



Advertisements
Similar presentations
December 17, 2004 JLab Hall A Upgrade 1 Semi-Inclusive DIS --opportunities at JLab upgrade Feng Yuan RBRC, Brookhaven National Laboratory.
Advertisements

Cédric Lorcé IPN Orsay - LPT Orsay Observability of the different proton spin decompositions June , University of Glasgow, UK CLAS12 3rd European.
Transversity and Transverse-Momentum-Dependent Partonic Functions Alessandro Bacchetta.
Cédric Lorcé IFPA Liège ECT* Colloquium: Introduction to quark and gluon angular momentum August 25, 2014, ECT*, Trento, Italy Spin and Orbital Angular.
Cédric Lorcé SLAC & IFPA Liège How to define and access quark and gluon contributions to the proton spin December 2, 2014, IIT Bombay, Bombay, India INTERNATIONAL.
Cédric Lorcé SLAC & IFPA Liège Transversity and orbital angular momentum January 23, 2015, JLab, Newport News, USA.
Universality of T-odd effects in single spin azimuthal asymmetries P.J. Mulders Vrije Universiteit Amsterdam BNL December 2003 Universality.
Light-front densities for transversely polarized hadrons Lorcé Cédric Mainz University Germany *4th Workshop on ERHMT, JLAb, Newport News, Virginia USA.
QCD Map of the Proton Xiangdong Ji University of Maryland.
Xiangdong Ji University of Maryland/SJTU Physics of gluon polarization Jlab, May 9, 2013.
Xiangdong Ji University of Maryland/SJTU
9/19/20151 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
9/19/20151 Semi-inclusive DIS: factorization Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory.
Cédric Lorcé IPN Orsay - LPT Orsay Orbital Angular Momentum in QCD June , Dipartimento di Fisica, Universita’ di Pavia, Italy.
1 In collaboration with L. Gamberg, Z. Kang, H. Xing Based on Phys.Lett. B743 (2015) , arXiv: Quasi-parton distribution functions: a study.
1 Transverse weighting for quark correlators QCD workshop, JLAB, May 2012 Maarten Buffing & Piet Mulders
Overview on Transverse Momentum Dependent Distribution and Fragmentation Functions M. Boglione.
Generalized Transverse- Momentum Distributions Cédric Lorcé Mainz University Germany Barbara Pasquini Pavia University Italy In collaboration with:
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv: [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory.
SCALE LAWS AT LARGE TRANSVERSE MOMENTUM GENERALIZED COUNTING RULE FOR HARD EXCLUSIVE PROCESS Feb. 23, Kijun Park.
May 18-20, 2005 SIR05 JLab 1 P ? Dependence of SSA -- from nonpert. to pert. Feng Yuan, RBRC, Brookhaven National Laboratory References: Ji, Ma, Yuan,
H. Avakian, Pavia, Sep 6 1 Harut Avakian (JLab) Study of dihadron production at JLab with the 12 GeV CLAS dectector DiFF Workshop, Pavia, Sep 6, 2011 JLab.
What pHe3 can teach us  Polarized He-3 is an effective neutron target  d-quark target  Polarized protons are an effective u-quark target 1 Therefore.
Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab DOE Science Review for the JLab Upgrade to 12 GeV, Jefferson Lab,
Cédric Lorcé IFPA Liège Multidimensional pictures of the nucleon (3/3) June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France Second International.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
Single-Spin Asymmetries at CLAS  Transverse momentum of quarks and spin-azimuthal asymmetries  Target single-spin asymmetries  Beam single-spin asymmetries.
Strangeness and Spin in Fundamental Physics Mauro Anselmino: The transverse spin structure of the nucleon Delia Hasch: The transverse spin structure of.
Wigner Distributions and light-front quark models Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Feng Yuan Xiaonu Xiong IPN.
大西 陽一 (阪 大) QCDの有効模型に基づく光円錐波動関数を用い た 一般化パートン分布関数の研究 若松 正志 (阪大)
0 Simonetta Liuti University of Virginia Structure of Nucleons and Nuclei Workshop Como, June 10 th- 14 th, 2013 N&N-StructureSimonetta Liuti Generalized.
EIC, Nucleon Spin Structure, Lattice QCD Xiangdong Ji University of Maryland.
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
For SoLID Collaboration Meeting Spokespersons Jian-Ping Chen (JLab) Jin Huang (MIT) Yi Qiang (JLab) Wenbiao Yan (USTC, China)
Contalbrigo Marco INFN Ferrara ECT* Workshop - Lattice QCD and Hadron Physics 15 th January 2014, Trento.
Cédric Lorcé IPN Orsay - LPT Orsay Introduction to the GTMDs and the Wigner distributions June , Palace Hotel, Como, Italy.
Transverse Momentum Dependent (TMD) Parton Distribution Functions in a Spectator Diquark Model Francesco Conti in collaboration with: Marco Radici (INFN.
Wigner distributions and quark orbital angular momentum Cédric Lorcé and May , JLab, Newport News, VA, USA.
OAM in transverse densities and resonances Cédric Lorcé and 09 Feb 2012, INT, Seattle, USA INT Workshop INT-12-49W Orbital Angular Momentum in QCD February.
Single spin asymmetries in pp scattering Piet Mulders Trento July 2-6, 2006 _.
3/8/20161 Nucleon Tomography --Parton Imaging in 3D Feng Yuan Lawrence Berkeley National Laboratory.
Transverse-Momentum Distributions and spherical symmetry Cédric Lorcé Mainz University Germany in collaboration with Barbara Pasquini Pavia University.
Relation between TMDs and PDFs in the covariant parton model approach Relation between TMDs and PDFs in the covariant parton model approach Petr Zavada.
Nucleon spin decomposition at twist-three Yoshitaka Hatta (Yukawa inst., Kyoto U.) TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
6/28/20161 Future Challenges of Spin Physics Feng Yuan Lawrence Berkeley National Laboratory.
The goal of the COMPASS" workshop at CERN on 4 March 2010 at CERN on 4 March 2010 is to better define the key measurements and their outcomes with.
Proton spin structure in phase-space May 17, FSU Alumni Center, Tallahassee, Florida, USA Cédric Lorcé CPhT Baryons May 2016 Florida State University.
Structure functions are parton densities P.J. Mulders Vrije Universiteit Amsterdam UIUC March 2003 Universality of T-odd effects in single.
Xiangdong Ji U. Maryland/ 上海交通大学 Recent progress in understanding the spin structure of the nucleon RIKEN, July 29, 2013 PHENIX Workshop on Physics Prospects.
Gluon orbital angular momentum in the nucleon
Nucleon spin decomposition
Quantum imaging of the proton via Wigner distributions
Sep 21st 2015, INFN Frascati National Laboratories, Frascati, Italy
June 28, Temple University, Philadelphia, USA
June , Dipartimento di Fisica, Universita’ di Pavia, Italy
May , JLab, Newport News, VA, USA
Probing the gluon Wigner distribution in diffractive dijet production
Wigner, Husimi and GTMD at small-x
Theory : phenomenology support 12 GeV
Accessing the gluon Wigner distribution in ep and pA collisions
Structure and Dynamics of the Nucleon Spin on the Light-Cone
Quark’s angular momentum densities in position space
August 29, Riken Tokyo Office, Tokyo, Japan
Can We Learn Quark Orbital Motion from SSAs?
Transverse Momentum Dependent Parton Distributions
Unique Description for SSAs in DIS and Hadronic Collisions
light-cone (LC) variables
GLOBAL POLARIZATION OF QUARKS IN NON-CENTRAL A+A COLLISIONS
Presentation transcript:

Generalized TMDs of the Proton Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Mainz U. & INFN, Pavia

Outline Generalized Transverse Momentum Dependent Parton Distributions (GTMDs) Wigner Distributions FT    b   Results in light-cone quark models  unpolarized quarks in unpolarized nucleon (generalized transverse charge density)

Generalized TMDs GTMDs  Complete parametrization : 16 GTMDs at twist-2 [Meißner, Metz, Schlegel (2009)]  Fourier Transform : 16 Wigner distributions [Belitsky, Ji, Yuan (2004)] x: average fraction of quark longitudinal momentum » : fraction of longitudinal momentum transfer k ? : average quark transverse momentum ¢ : nucleon momentum transfer

GTMDs Transverse charge densities Spin densities Charges PDFs [ Lorce, BP, Vanderhaeghen, arXiv: ] Wigner distribution 2D Fourier transform GPDs TMFFs TMSDs FFs ¢ = 0 TMDs

Longitudinal Transverse W igner D istributions [Wigner (1932)] [Belitsky, Ji, Yuan (04)] [Lorce’, BP: arXiv: ] QM QFT (Breit frame) QFT (light cone) GPDs TMDs GTMDs Heisenberg’s uncertainty relations Quasi-probabilistic Third 3D picture ! No restrictions from Heisenberg’s uncertainty relations

 real functions, but in general not-positive definite  Wigner distributions in QCD: at » =0 ! diagonal in the Fock-space N N N=3 ! overlap of quark light-cone wave-functions not probabilistic interpretation correlations of quark momentum and position in the transverse plane as function of quark and nucleon polarizations  no known experiments can directly measure them ! needs phenomenological models W igner D istributions

Light-Cone Quark Models invariant under boost, independent of P  internal variables: LCWF: [Brodsky, Pauli, Pinsky, ’98] Bag Model, Â QSM, LCQM, Quark-Diquark and Covariant Parton Models momentum wfspin-flavor wfrotation from canonical spin to light-cone spin Common assumptions :  No gluons  Independent quarks [ Lorce, BP, Vanderhaeghen, arXiv: ] Bag Model, Â QSM, LCQM, Quark-Diquark and Covariant Parton Models

E xample: U npol. up Q uark in U npol. P roton Longitudinal Transverse ( 1 out of 16)  k T b?b? Generalized Transverse Charge Density fixed angle between k ? and b ? and fixed value of |k ? |

Longitudinal Transverse E xample: U npol. up Q uark in U npol. P roton fixed 3Q light-cone model = ( 1 out of 16) [Lorce’, BP, in preparation]

Longitudinal Transverse E xample: U npol. up Q uark in U npol. P roton fixed 3Q light-cone model = ( 1 out of 16) favored unfavored [Lorce’, BP, in preparation]

E xample: U npol. up Q uark in U npol. P roton (1 out of 16) Longitudinal Transverse 0.1 GeV² 0.2 GeV² 0.3 GeV² 0.4 GeV² 3Q light-cone model [Lorce’, BP, in preparation]

Summary  GTMDs $ Wigner Distributions - the most complete information on partonic structure of the nucleon  General Formalism for 3-quark contribution to GTMDs - applicable for large class of models: LCQMs, Â QSM, Bag model  Results for Wigner distributions in the transverse plane - non-trivial correlations between b ? and k ? due to orbital angular momentum - anisotropic distribution in k ? for unpolarized quarks in unpolarized nucleon

proton neutron [Miller (2007); Burkardt (2007)] charge distribution in the transverse plane  Integrating over b ?  Integrating over k ? charge density in the transverse plane b ?

LC helicity amplitudes ( ¸ ’ ¸ ) Independent quarks LC helicitycanonical spin rotation around an axis orthogonal to z and k LC helicity $ canonical spin quark nucleon ( ¤ ’ ¤ )

LC helicitycanonical spin rotation around an axis orthogonal to z and k Light-Cone CQMChiral Quark-Soliton ModelBag Model (Melosh rotation) Light-Cone Helicity and Canonical Spin

16 GTMDs º ! quark polarization ¹ ! nucleon polarization Active quark : Spectator quarks : Model Independent Spin Structure ( )

Backup

µ 0 ¼ /2 ¼ 3/2 ¼ k T k T k T Unpolarized u quark in unpolarized proton,k T  fixed k T 0.1 GeV 0.2 GeV 0.3 GeV 0.4 GeV

= + k T k T fixed Unpolarized u quark in unpolarized proton Generalized Transverse Charge Densities µ = ¼ /2 µ = 0

Wigner function for transversely pol. quark in longitudinally pol. nucleon µ = ¼ /2 µ = 0 T-odd  k T b sxsx k T, µ fixed

Wigner function for transversely pol. quark in longitudinally pol. nucleon Dipole µ = 0 µ = ¼ /2 Monopole + Dipole k T fixed sxsx Monopole

¼ 3/2 ¼ u quark pol. in x direction in longitudinally pol.proton,k T  fixed 0.1 GeV 0.2 GeV 0.3 GeV 0.4 GeV k T k T k T k T µ 0 ¼ /2

 Integrating over b ? density in the transverse plane k ? of transversely pol. u and d quark in longitudinally pol nucleon sxsxupdown BP, Cazzaniga, Boffi, PRD78 (2008) Lorce`, BP, in preparation Haegler, Musch, Negele, Schaefer, Europhys. Lett. 88 (2009)  Integrating over k ?