大西 陽一 (阪 大) QCDの有効模型に基づく光円錐波動関数を用い た 一般化パートン分布関数の研究 若松 正志 (阪大)

Slides:



Advertisements
Similar presentations
April 06, 2005 JLab 12 GeV upgrade DOE Science Review 1 Fundamental Structure of Hadrons Zein-Eddine Meziani April 06, 2005 DOE Science Review for JLab.
Advertisements

Parity violating asymmetries: Milos (Greece) May 2006 Solitonic approach to strange Form Factors Klaus Goeke Bochum University Transregio/SFB Bonn, Bochum,
Sigma meson cloud and Proton’s light flavor sea quarks Peking University, China ( 北京大学 ) Feng Huang ( 黄 峰) Feng Huang ( 黄 峰) Supervisor: Bo-Qiang Ma (马伯强)
Remarks on angular momentum Piet Mulders Trieste, November 2006
Graduiertenkolleg Freiburg The nucleon as non- topological chiral soliton Klaus Goeke Ruhr-Universität Bochum, Theoretische Physik II Hadronenphysik.
NSTAR 2007Roelof Bijker, ICN-UNAM1 Flavor Asymmetry of the Nucleon Sea in an Unquenched Quark Model Introduction Degrees of freedom Unquenched quark model.
Fermions and the Dirac Equation In 1928 Dirac proposed the following form for the electron wave equation: The four  µ matrices form a Lorentz 4-vector,
Symmetries By Dong Xue Physics & Astronomy University of South Carolina.
Roberto Francisco Pérez Benito On behalf the HERMES Collaboration European Graduate School Lecture Week on Hadron Physics Jyväskylä, Aug 25-29, 2008 HERMES.
Xiangdong Ji University of Maryland/SJTU Physics of gluon polarization Jlab, May 9, 2013.
Xiangdong Ji University of Maryland/SJTU
9/19/20151 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
Exclusive limits of DY processes QNP-2012, Ecole Polytechnique, April 19, 2012 Oleg Teryaev JINR, Dubna.
Future Opportunities at an Electron-Ion Collider Oleg Eyser Brookhaven National Laboratory.
Deeply Virtual Exclusive Reactions with CLAS Valery Kubarovsky Jefferson Lab ICHEP July 22, 2010, Paris, France.
On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia Contents.
Quark Correlations and Single Spin Asymmetry Quark Correlations and Single Spin Asymmetry G. Musulmanbekov JINR, Dubna, Russia Contents.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv: [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory.
Parton Model & Parton Dynamics Huan Z Huang Department of Physics and Astronomy University of California, Los Angeles Department of Engineering Physics.
Monday, Jan. 27, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #4 Monday, Jan. 27, 2003 Dr. Jae Yu 1.Neutrino-Nucleon DIS 2.Formalism of -N DIS.
SCALE LAWS AT LARGE TRANSVERSE MOMENTUM GENERALIZED COUNTING RULE FOR HARD EXCLUSIVE PROCESS Feb. 23, Kijun Park.
Particle Physics Chris Parkes Experimental QCD Kinematics Deep Inelastic Scattering Structure Functions Observation of Partons Scaling Violations Jets.
Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent.
Generalized Form Factors, Generalized Patron Distributions, and Spin Contents of the Nucleon with Y. Nakakoji (Osaka Univ.) 1. Introduction - Still unsolved.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
QCD-2004 Lesson 2 :Perturbative QCD II 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian and Feynman rules.
General Discussion some general remarks some questions.
Harleen Dahiya Panjab University, Chandigarh IMPLICATIONS OF  ´ COUPLING IN THE CHIRAL CONSTITUENT QUARK MODEL.
Single-Spin Asymmetries at CLAS  Transverse momentum of quarks and spin-azimuthal asymmetries  Target single-spin asymmetries  Beam single-spin asymmetries.
Wigner Distributions and light-front quark models Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Feng Yuan Xiaonu Xiong IPN.
The Quark Structure of the Nucleon Inti Lehmann & Ralf Kaiser University of Glasgow Cosener’s House Meeting 23/05/2007 Nucleon Structure Generalised Parton.
Nucleon Polarizabilities: Theory and Experiments
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Single Spin Asymmetry in Correlated Quark Model Single Spin Asymmetry in Correlated Quark Model G. Musulmanbekov JINR, Dubna Contents.
SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL G. Musulmanbekov JINR, Dubna, Russia
HERMES による パートン helicity 分布関数の QCD 解析 Tokyo Inst. of Tech. 1. Quantum Chromo-Dynamics (QCD) 2. Parton Helicity Distribution and Nucleon Spin Problem 3.
Drell-Yan pairs from pion scattering on longitudinally polarized nucleons COMPASS DY meeting, Torino, March Oleg Teryaev BLTP, JINR, Dubna.
EIC, Nucleon Spin Structure, Lattice QCD Xiangdong Ji University of Maryland.
Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。
GPD and underlying spin structure of the nucleon M. Wakamatsu and H. Tsujimoto (Osaka Univ.) 1. Introduction - Still unsolved fundamental puzzle in hadron.
2 and 3-jet Analysis in Flux-tube Model J.B.Choi, M.Q.Whang, S.K.Lee (Chonbuk National University, Korea)
OAM in transverse densities and resonances Cédric Lorcé and 09 Feb 2012, INT, Seattle, USA INT Workshop INT-12-49W Orbital Angular Momentum in QCD February.
Single spin asymmetries in pp scattering Piet Mulders Trento July 2-6, 2006 _.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
GPD and underlying spin structure of the Nucleon M. Wakamatsu and H. Tsujimoto (Osaka Univ.) 1. Introduction Still unsolved fundamental puzzle in hadron.
Non-Linear Effects in Strong EM Field Alexander Titov Bogoliubov Lab. of Theoretical Physics, JINR, Dubna International.
Lecture 2 - Feynman Diagrams & Experimental Measurements
DPyC 2007Roelof Bijker, ICN-UNAM1 An Unquenched Quark Model of Baryons Introduction Degrees of freedom Unquenched quark model Closure limit; Spin of the.
Single Target Spin Asymmetries and GPDs Jian-ping Chen, Jefferson Lab, Virginia, USA SSA Workshop, BNL, June 1-3, 2005 Nucleon structure and GPDs DVCS.
SPIN OF THE PROTON IN CORRELATED QUARK MODEL G
Nucleon spin decomposition
PDF from Hadronic Tensor on the Lattice and Connected Sea Evolution
June , Dipartimento di Fisica, Universita’ di Pavia, Italy
Theory : phenomenology support 12 GeV
Countries that signed the nuclear arms treaty with Iran
Handout 9 : The Weak Interaction and V-A
Structure and Dynamics of the Nucleon Spin on the Light-Cone
Quark’s angular momentum densities in position space
Can We Learn Quark Orbital Motion from SSAs?
Transversity Distributions and Tensor Charges of the Nucleon
light-cone (LC) variables
Deeply Virtual Neutrino Scattering at Leading Twist
Sichuan Chengdu → Huazhong U of Sci. & Wuhan
New Results on 0 Production at HERMES
一般化されたパートン分布関数:実験の現状
Heavy-to-light transitions on the light cone
Institute of Modern Physics Chinese Academy of Sciences
Presentation transcript:

大西 陽一 (阪 大) QCDの有効模型に基づく光円錐波動関数を用い た 一般化パートン分布関数の研究 若松 正志 (阪大)

In QCD, the candidates for the missing spin In this thesis, we study the GPDs using the light-cone wave function based on the chiral quark soliton model (CQSM) Generalized parton distributions (GPDs) contain information ofthe orbital angular momentum and “Spin structure of the nucleon” reflects non-perturbative physics in QCD Natural questions are what carries the rest of the nucleon spin?

Why light-cone wave function ? Non-local quark operator High energy observable (GPDs, parton distribution) In the light-cone frame Quark (anti-quark) number operator Light-cone wave function Partonic interpretation very clear

QCD definitions of the GPDs Deeply virtual Compton scattering Soft part including non-perturbative information GPD

Spin unpolarized case Spin polarized case Squared momentum transferFeynman variable longitudinal momentum transfer Light-cone coordinate

Properties of the GPDs Forward limit : x moments of GPDs momentum space distribution coordinate space distribution GPDs provide totally new information on baryon structure

Ji’s sum rule Knowing and, one can extract the quark orbital angular momentum Total quark contribution can be decomposed gauge invariantly into the quark spin and orbital contribution

Partonic interpretation of GPD Dirac field Three kinematical regions : quark (anti-quark) creation and annihilation operators Quark distribution Antiquark distribution Meson distribution amplitude

Overlap representation Fock state decomposition Non-diagonal matrix element Need for the theory which can deal with the higher Fock component (Meson distribution amplitude)

Light-cone wave function in the CQSM Effective action Dynamical quark mass M=375MeV Spontaneous chiral symmetry breaking of the QCD vacuum Strong coupling between pion and quark Basic lagrangian

3 valence quarks Deep Dirac sea Indefinite number of quark and anti-quark pairs Distorted Dirac sea continuum : Fourier transform of equal time quark Green function quarkanti-quark

Baryon w.f. is given by the product of valence part and coherent exponential of quark anti-quark pair valence quark w.f.Dirac sea continuum w.f. Lorentz boost Light-cone w.f. w.f. in the Infinite Momentum Frame (IMF)

Light-cone wave function representation of the GPDs in the CQSM Normalization we take up to 5Q components in the w.f.

Physical observable Matrix elements of some operators sandwiched between the initial and the final wave functions unpolarized case : polarized case : 3q contribution to GPDs unpolarized case : polarized case :

5Q contributions to GPDs valence part initialfinal Quark antiquark pair 3 valence quark

Dirac sea quark part 5Q contributions to GPDs quark contribution antiquark contribution

Non-diagonal Fock components contribution Final representation

Numerical results for GPDs

zero momentum transverse case : spin unpolarized u quark distribution spin polarized u quark distribution

Impact parameter space parton distribution represents a spatial density in the transverse directions and momentum density in the longitudinal direction

Impact parameter space parton distribution

Large spatial distribution in the low x region the pion cloud surrounding the three valence quark core

Summary and conclusions Light-cone wave function based on the CQSM 3 valence quarks + coherent exponential of quark anti-quark pair GPDs region Non-diagonal matrix elements in Fock space Discontinuity at We have derived the light-cone w.f. representations for the GPDs based on the CQSM

With phase conventions of the Brodsky-Lepage light-cone spinors Light-cone helicity non-flip part Light-cone helicity flip part

Valence quark wave function h(p) : upper component j(p) :lower component Wave function of the Dirac continuum mean chiral fields quarkanti-quark

Forward limit

asymmetry NMC measurement pion cloud effects Dirac sea polarization Gottfried sum

NuTeV anomaly NuTeV group reported the value of the weak mixing angle :prediction from standard model ? :CQSM but Strange sea asymmetry explains nearly 70% of the NuTeV anomaly

3 valence quarks Deep Dirac sea Hedgehog ansatz Soliton is not spin isospin eigenstateHedgehog Projection method