5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Last time: r link layer services r error detection, correction r multiple access protocols and LANs.

Slides:



Advertisements
Similar presentations
Ethernet “dominant” LAN technology: cheap $20 for 100Mbs!
Advertisements

Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r Homework 3 out r Project 3 out, link state only. Some slides are.
5: DataLink Layer5-1 Mac Addressing, Ethernet, and Interconnections.
1 Data Link Layer Ethernet Bridges Token Ring. 2 Summary of MAC protocols What do you do with a shared media? Channel Partitioning: time, frequency or.
5: DataLink Layer5a-1 MAC Sublayer. 5: DataLink Layer5a-2 Multiple Access Links and Protocols Two types of “links”: r point-to-point m PPP for dial-up.
5: DataLink Layer5-1 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or.
5: DataLink Layer5-1 Data Link Layer r What is Data Link Layer? r Multiple access protocols r Ethernet.
5-1 Data Link Layer r What is Data Link Layer? r Multiple access protocols r Link-layer Addressing r Ethernet.
1 Announcement r Homework #3 was due last night r Homework #4 is out.
EE 122: Ethernet and Ion Stoica September 18, 2002 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose)
1 Link Layer Message M A B Problem: Given a message M at a node A consisting of several packets, how do you send the packets to a “neighbor” node B –Neighbor:
DataLink Layer session 1 TELE3118: Network Technologies Week 2: Data Link Layer Framing, Error Control, Multiple Access Some slides have been taken.
Review r Multicast Routing m Three options m source-based tree: one tree per source shortest path trees reverse path forwarding m group-shared tree: group.
MAC Addresses and ARP 32-bit IP address: –network-layer address –used to get datagram to destination IP subnet MAC (or LAN or physical or Ethernet) address:
1 CSE401N: COMPUTER NetworkS LAN address & ARP Ethernet Basics.
5-1 Data Link Layer r Today, we will study the data link layer… r This is the last layer in the network protocol stack we will study in this class…
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Our goals: r understand principles behind data link layer services: m error detection, correction.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
16 – CSMA/CD - ARP Network Layer4-1. 5: DataLink Layer5-2 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit.
5: DataLink Layer5a-1 Summary of MAC protocols r What do you do with a shared media? m Channel Partitioning, by time, frequency or code Time Division,Code.
IP Address 0 network host 10 network host 110 networkhost 1110 multicast address A B C D class to to
Introduction 1 Lecture 25 Link Layer (Ethernet, Switch) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
Lecture 16 Random Access protocols r A node transmits at random at full channel data rate R. r If two or more nodes “collide”, they retransmit at random.
1 Token Passing: IEEE802.5 standard  4 Mbps  maximum token holding time: 10 ms, limiting packet length  packet (token, data) format:  SD, ED mark start,
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 26 Omar Meqdadi Department of Computer Science and Software Engineering.
1 Mao W07 Multiple Access EECS 489 Computer Networks Z. Morley Mao Wednesday Feb 21, 2007 Acknowledgement:
5: DataLink Layer5-1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Part 3: MAC Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
1 Random Access Protocols r When node has packet to send m transmit at full channel data rate R. m no a priori coordination among nodes  two or more transmitting.
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 27 Omar Meqdadi Department of Computer Science and Software Engineering.
LAN Technologies MAC protocols used in LANs, to control access to the channel Token Rings: IEEE (IBM token ring), for computer room, or department.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Part 4: Link Layer addressing Ethernet Computer Networking: A Top Down Approach 6 th edition Jim Kurose,
5: DataLink Layer5-1 Ethernet “dominant” wired LAN technology: r cheap $20 for 100Mbs! r first widely used LAN technology r Simpler, cheaper than token.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
1 Computer Communication & Networks Lecture 13 Datalink Layer: Local Area Network Waleed Ejaz
4-1 Last time □ Link layer overview ♦ Services ♦ Adapters □ Error detection and correction ♦ Parity check ♦ Internet checksum ♦ CRC □ PPP ♦ Byte stuffing.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer multiple.
Token Passing: IEEE802.5 standard  4 Mbps  maximum token holding time: 10 ms, limiting packet length  packet (token, data) format:  SD, ED mark start,
Link Layer: MAC Ilam University Dr. Mozafar Bag-Mohammadi.
Multiple Access Readings: Kurose & Ross, 5.3, 5.5.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Our goals: r understand principles behind data link layer services: m error detection, correction.
4: DataLink Layer1 Multiple Access Links and Protocols Three types of “links”: r point-to-point (single wire, e.g. PPP, SLIP) r broadcast (shared wire.
5: DataLink Layer5-1 The Data Link Layer Chapter 5 Kurose and Ross Today 5.1 and 5.3.
5: DataLink Layer5-1 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit entire frame r If channel sensed.
CS 1652 Jack Lange University of Pittsburgh 1. 5: DataLink Layer5-2 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram.
Multiple Access Links and Protocols
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
EE 122: Lecture 6 Ion Stoica September 13, 2001 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose)
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-layer Addressing.
Token Passing: IEEE802.5 standard  4 Mbps  maximum token holding time: 10 ms, limiting packet length  packet (token, data) format:
CSEN 404 Data Link Layer Amr El Mougy Lamia AlBadrawy.
4: DataLink Layer1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.
5: DataLink Layer5-1 Slotted ALOHA Assumptions r all frames same size r time is divided into equal size slots, time to transmit 1 frame r nodes start to.
5-1 Last time □ Multiple access protocols ♦ Channel partitioning MAC protocols TDMA, FDMA ♦ Random access MAC protocols Slotted Aloha, Pure Aloha, CSMA,
Computer Communication Networks
Link Layer 5.1 Introduction and services
Random Access Protocols
Chapter 5 Link Layer and LANs
MAC Addresses and ARP 32-bit IP address:
CS 457 – Lecture 6 Ethernet Spring 2012.
Multiple access.
Mac Addressing, Ethernet, and Interconnections
Link Layer and LANs Not everyone is meant to make a difference. But for me, the choice to lead an ordinary life is no longer an option 5: DataLink Layer.
Link Layer 5.1 Introduction and services
Link Layer: Multiple Access
LAN Addresses and ARP IP address: drives the packet to destination network LAN (or MAC or Physical) address: drives the packet to the destination node’s.
Link Layer 5.1 Introduction and services
Presentation transcript:

5: DataLink Layer5a-1 Chapter 5: The Data Link Layer Last time: r link layer services r error detection, correction r multiple access protocols and LANs Today: r multiple access protocols and LANs r link layer addressing, ARP r specific link layer technologies: r Lab 8/Project 3 r Next Friday class r Summer opps.

5: DataLink Layer5a-2 Slotted Aloha r time is divided into equal size slots (= pkt trans. time) r node with new arriving pkt: transmit at beginning of next slot r if collision: retransmit pkt in future slots with probability p, until successful. Success (S), Collision (C), Empty (E) slots

5: DataLink Layer5a-3 Slotted Aloha efficiency Q: what is max fraction slots successful? A: Suppose N stations have packets to send m each transmits in slot with probability p m prob. successful transmission S is: by single node: S= p (1-p) (N-1) by any of N nodes S = Prob (only one transmits) = N p (1-p) (N-1) … choosing optimum p as n -> infty... = 1/e =.37 as N -> infty At best: channel use for useful transmissions 37% of time!

5: DataLink Layer5a-4 Pure (unslotted) ALOHA r unslotted Aloha: simpler, no synchronization r pkt needs transmission: m send without awaiting for beginning of slot r collision probability increases: m pkt sent at t 0 collide with other pkts sent in [t 0 -1, t 0 +1]

5: DataLink Layer5a-5 Pure Aloha (cont.) P(success by given node) = P(node transmits). P(no other node transmits in [t 0 -1,t 0 ]). P(no other node transmits in [t 0, t 0 +1]) = p. (1-p) N-1. (1-p) N-1 P(success by any of N nodes) = N p. (1-p) N-1. (1-p) N-1 … choosing optimum p as n -> infty... = 1/(2e) =.18 S = throughput = “goodput” (success rate) G = offered load = Np Pure Aloha Slotted Aloha protocol constrains effective channel throughput!

5: DataLink Layer5a-6 CSMA: Carrier Sense Multiple Access) CSMA: listen before transmit: r If channel sensed idle: transmit entire pkt r If channel sensed busy, defer transmission m Persistent CSMA: retry immediately with probability p when channel becomes idle (may cause instability) m Non-persistent CSMA: retry after random interval r human analogy: don’t interrupt others!

5: DataLink Layer5a-7 CSMA collisions collisions can occur: propagation delay means two nodes may not yet hear each other’s transmission collision: entire packet transmission time wasted spatial layout of nodes along ethernet note: role of distance and propagation delay in determining collision prob.

5: DataLink Layer5a-8 CSMA/CD (Collision Detection) CSMA/CD: carrier sensing, deferral as in CSMA m collisions detected within short time m colliding transmissions aborted, reducing channel wastage m persistent or non-persistent retransmission r collision detection: m easy in wired LANs: measure signal strengths, compare transmitted, received signals m difficult in wireless LANs: receiver shut off while transmitting r human analogy: the polite conversationalist

5: DataLink Layer5a-9 CSMA/CD collision detection

5: DataLink Layer5a-10 “Taking Turns” MAC protocols channel partitioning MAC protocols: m share channel efficiently at high load m inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node! random access MAC protocols m efficient at low load: single node can fully utilize channel m high load: collision overhead “taking turns” protocols look for best of both worlds!

5: DataLink Layer5a-11 “Taking Turns” MAC protocols Polling: r master node “invites” slave nodes to transmit in turn r Request to Send, Clear to Send msgs r concerns: m polling overhead m latency m single point of failure (master) Token passing: r control token passed from one node to next sequentially. r token message r concerns: m token overhead m latency m single point of failure (token)

5: DataLink Layer5a-12 Reservation-based protocols Distributed Polling: r time divided into slots r begins with N short reservation slots m reservation slot time equal to channel end-end propagation delay m station with message to send posts reservation m reservation seen by all stations r after reservation slots, message transmissions ordered by known priority

5: DataLink Layer5a-13 Summary of MAC protocols r What do you do with a shared media? m Channel Partitioning, by time, frequency or code Time Division,Code Division, Frequency Division m Random partitioning (dynamic), ALOHA, S-ALOHA, CSMA, CSMA/CD carrier sensing: easy in some technoligies (wire), hard in others (wireless) CSMA/CD used in Ethernet m Taking Turns polling from a central cite, token passing

5: DataLink Layer5a-14 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing m Ethernet m hubs, bridges, switches m m PPP m ATM

5: DataLink Layer5a-15 LAN Addresses and ARP 32-bit IP address: r network-layer address r used to get datagram to destination network (recall IP network definition) LAN (or MAC or physical) address: r used to get datagram from one interface to another physically-connected interface (same network) r 48 bit MAC address (for most LANs) burned in the adapter ROM

5: DataLink Layer5a-16 LAN Addresses and ARP Each adapter on LAN has unique LAN address

5: DataLink Layer5a-17 LAN Address (more) r MAC address allocation administered by IEEE r manufacturer buys portion of MAC address space (to assure uniqueness) r Analogy: (a) MAC address: like Social Security Number (b) IP address: like postal address r MAC flat address => portability m can move LAN card from one LAN to another r IP hierarchical address NOT portable m depends on network to which one attaches

5: DataLink Layer5a-18 Recall earlier routing discussion A B E Starting at A, given IP datagram addressed to B: r look up net. address of B, find B on same net. as A r link layer send datagram to B inside link-layer frame B’s MAC addr A’s MAC addr A’s IP addr B’s IP addr IP payload datagram frame frame source, dest address datagram source, dest address

5: DataLink Layer5a-19 ARP: Address Resolution Protocol r Each IP node (Host, Router) on LAN has ARP module, table r ARP Table: IP/MAC address mappings for some LAN nodes m TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min) Question: how to determine MAC address of B given B’s IP address?

5: DataLink Layer5a-20 ARP protocol r A knows B's IP address, wants to learn physical address of B r A broadcasts ARP query pkt, containing B's IP address m all machines on LAN receive ARP query r B receives ARP packet, replies to A with its (B's) physical layer address r A caches (saves) IP-to-physical address pairs until information becomes old (times out) m soft state: information that times out (goes away) unless refreshed

5: DataLink Layer5a-21 Routing to another LAN Walkthrough: routing from A to B via R r In routing table at source Host, find router r In ARP table at source, find MAC address E6-E BB- 4B, etc A R B

5: DataLink Layer5a-22 r A creates IP packet with source A, destination B r A uses ARP to get R’s physical layer address for r A creates Ethernet frame with R's physical address as dest, Ethernet frame contains A-to-B IP datagram r A’s data link layer sends Ethernet frame r R’s data link layer receives Ethernet frame r R removes IP datagram from Ethernet frame, sees its destined to B r R uses ARP to get B’s physical layer address r R creates frame containing A-to-B IP datagram sends to B A R B

5: DataLink Layer5a-23 Ethernet “dominant” LAN technology: r cheap $20 for 100Mbs! r first widely used LAN technology r Simpler, cheaper than token LANs and ATM r Kept up with speed race: 10, 100, 1000 Mbps Metcalfe’s Ethernet sketch

5: DataLink Layer5a-24 Ethernet Frame Structure Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame Preamble: r 7 bytes with pattern followed by one byte with pattern r used to synchronize receiver, sender clock rates

5: DataLink Layer5a-25 Ethernet Frame Structure (more) r Addresses: 6 bytes, frame is received by all adapters on a LAN and dropped if address does not match r Type: indicates the higher layer protocol, mostly IP but others may be supported such as Novell IPX and AppleTalk) r CRC: checked at receiver, if error is detected, the frame is simply dropped

5: DataLink Layer5a-26 Ethernet: uses CSMA/CD A: sense channel, if idle then { transmit and monitor the channel; if detect another transmission then { abort and send jam signal; update # collisions; delay as required by exponential backoff algorithm; goto A } else {done with the frame; set collisions to zero} } else {wait until ongoing transmission is over and goto A}

5: DataLink Layer5a-27 Ethernet’s CSMA/CD (more) Jam Signal: make sure all other transmitters are aware of collision; 48 bits; Exponential Backoff: r Goal: adapt retransmission attempts to estimated current load m heavy load: random wait will be longer r first collision: choose K from {0,1}; delay is K x 512 bit transmission times r after second collision: choose K from {0,1,2,3}… r after ten or more collisions, choose K from {0,1,2,3,4,…,1023}

5: DataLink Layer5a-28 Ethernet Technologies: 10Base2 r 10: 10Mbps; 2: under 200 meters max cable length r thin coaxial cable in a bus topology r repeaters used to connect up to multiple segments r repeater repeats bits it hears on one interface to its other interfaces: physical layer device only!

5: DataLink Layer5a-29 10BaseT and 100BaseT r 10/100 Mbps rate; later called “fast ethernet” r T stands for Twisted Pair r Hub to which nodes are connected by twisted pair, thus “star topology” r CSMA/CD implemented at hub

5: DataLink Layer5a-30 10BaseT and 100BaseT (more) r Max distance from node to Hub is 100 meters r Hub can disconnect “jabbering” adapter r Hub can gather monitoring information, statistics for display to LAN administrators