4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation

Slides:



Advertisements
Similar presentations
4-5 Warm Up Lesson Presentation Lesson Quiz
Advertisements

4-5 Warm Up Lesson Presentation Lesson Quiz
4-6 Warm Up Lesson Presentation Lesson Quiz
4-6 Warm Up Lesson Presentation Lesson Quiz
Triangle Congruence: SSS and SAS
CONGRUENT TRIANGLES.
4-3, 4-4, and 4-5 Congruent Triangles Warm Up Lesson Presentation
7-3 Triangle Similarity: AA, SSS, and SAS Warm Up Lesson Presentation
Warm Up 1. Name the angle formed by AB and AC. 2.Name the three sides of ABC. 3. ∆ QRS  ∆ LMN. Name all pairs of congruent corresponding parts. Possible.
Warm Up Lesson Presentation Lesson Quiz.
4-6 Triangle Congruence: SSS and SAS Section 4.6 Holt Geometry
Triangle Similarity: AA, SSS, and SAS 7-3 Holt Geometry.
Do Now 1. ∆ QRS  ∆ LMN. Name all pairs of congruent corresponding parts. 2.Find the equation of the line through the points (3, 7) and (5, 1) QR  LM,
1. Name the angle formed by AB and AC.
Triangle Similarity: 7-3 AA, SSS, and SAS Warm Up Lesson Presentation
Warm Up 1. Name the angle formed by AB and AC.
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Holt McDougal Geometry 4-5 Triangle Congruence: SSS and SAS 4-5 Triangle Congruence: SSS and SAS Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Chapter congruent triangle : SSS and SAS. SAT Problem of the day.
Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS and SAS. Objectives.
Example: Using Corresponding Parts of Congruent Triangles Given: ∆ABC  ∆DBC. Find the value of x.  BCA and  BCD are rt.  s.  BCA   BCD m  BCA =
6.3 Proving Quadrilaterals are Parallelograms Standard: 7.0 & 17.0.
4-5 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: HL
4.6 Congruent Triangles SSS and SAS. Example 1: Verifying Triangle Congruence Show that the triangles are congruent for the given value of the variable.
Warm Up Solve each proportion If ∆QRS ~ ∆XYZ, identify the pairs of congruent angles and write 3 proportions using pairs of corresponding.
Holt Geometry 4-4 Triangle Congruence: SSS and SAS Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS.
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Holt McDougal Geometry 4-5 Triangle Congruence: SSS and SAS 4-5 Triangle Congruence: SSS and SAS Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Warm Up Solve each proportion
Proving Triangles are Congruent: SSS, SAS
CONFIDENTIAL 1 Geometry Triangle Congruence SSS and SAS.
Objectives Apply ASA, AAS, and HL to construct triangles and to solve problems. Prove triangles congruent by using ASA, AAS, and HL.
Unit 4: Triangle Congruence 4.4 Triangle Congruence: SAS.
Holt McDougal Geometry 4-6 Triangle Congruence: ASA, AAS, and HL 4-6 Triangle Congruence: ASA, AAS, and HL Holt Geometry Warm Up Warm Up Lesson Presentation.
Ratios in similar polygons
4-3 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Triangle Similarity: 7-3 AA, SSS, and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
7-3 Triangle Similarity: AA, SSS, SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Geometry A Bellwork 3) Write a congruence statement that indicates that the two triangles are congruent. A D B C.
Objectives Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS and SAS.
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Triangle Congruence: SSS and SAS
Pearson Unit 1 Topic 4: Congruent Triangles 4-2: Triangle Congruence by SSS and SAS Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Warm Up 1. Name the angle formed by AB and AC.
Warm-Up: Perspective drawing
Learning Targets I will apply the SSS and SAS Postulates to construct triangles and solve problems. I will prove triangles congruent by using the SSS and.
Sec 4.6: Triangle Congruence: SSS and SAS
5.3 Vocabulary included angle triangle rigidity
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objectives Apply SSS and SAS to construct triangles and solve problems. Prove triangles congruent by using SSS and SAS.
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Module 1 Topic D – Lesson 24 Warm Up
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objectives Apply SAS to construct triangles and solve problems.
Congruent Triangles. Congruence Postulates.
4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Objectives Apply SSS to construct triangles and solve problems.
4-5 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation
Presentation transcript:

4-4 Triangle Congruence: SSS and SAS Warm Up Lesson Presentation Holt Geometry Warm Up Lesson Presentation Lesson Quiz

In Lesson 4-3, you proved triangles congruent by showing that all six pairs of corresponding parts were congruent. The property of triangle rigidity gives you a shortcut for proving two triangles congruent. It states that if the side lengths of a triangle are given, the triangle can have only one shape.

For example, you only need to know that two triangles have three pairs of congruent corresponding sides. This can be expressed as the following postulate.

Adjacent triangles share a side, so you can apply the Reflexive Property to get a pair of congruent parts. Remember!

Example 1: Using SSS to Prove Triangle Congruence Use SSS to explain why ∆ABC  ∆DBC.

Check It Out! Example 1 Use SSS to explain why ∆ABC  ∆CDA.

An included angle is an angle formed by two adjacent sides of a polygon. B is the included angle between sides AB and BC.

Example 2: Engineering Application The diagram shows part of the support structure for a tower. Use SAS to explain why ∆XYZ  ∆VWZ.

Use SAS to explain why ∆ABC  ∆DBC. Check It Out! Example 2 Use SAS to explain why ∆ABC  ∆DBC.

Example 3A: Verifying Triangle Congruence Show that the triangles are congruent for the given value of the variable. ∆MNO  ∆PQR, when x = 5.

Example 3B: Verifying Triangle Congruence Show that the triangles are congruent for the given value of the variable. ∆STU  ∆VWX, when y = 4.

Check It Out! Example 3 Show that ∆ADB  ∆CDB, t = 4. DA = 3t + 1 = 3(4) + 1 = 13 DC = 4t – 3 = 4(4) – 3 = 13 mD = 2t2 = 2(16)= 32° ADB  CDB Def. of . DB  DB Reflexive Prop. of . ∆ADB  ∆CDB by SAS.

Example 4: Proving Triangles Congruent Given: BC ║ AD, BC  AD Prove: ∆ABD  ∆CDB Statements Reasons 1. BC || AD 1. 2. 2. Alt. Int. s Thm. 3. 3. Given 4. BD  BD 4. 5. ∆ABD  ∆ CDB 5. SAS Steps 3, 2, 4