Dephasing and noise in weakly- coupled Bose-Einstein condensates Amichay Vardi Y. Khodorkovsky, G. Kurizki, and AV PRL 100, 220403 (2008), e-print arXiv:0805.1832.

Slides:



Advertisements
Similar presentations
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Advertisements

APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
1 Eniko Madarassy Reconnections and Turbulence in atomic BEC with C. F. Barenghi Durham University, 2006.
Many-body dynamics of association in quantum gases E. Pazy, I. Tikhonenkov, Y. B. Band, M. Fleischhauer, and A. Vardi.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA,
Interference of one dimensional condensates Experiments: Schmiedmayer et al., Nature Physics (2005,2006) Transverse imaging long. imaging trans. imaging.
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
Eugene Demler Harvard University
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Anderson localization in BECs
Analyse de la cohérence en présence de lumière partiellement polarisée François Goudail Laboratoire Charles Fabry de l’Institut d’Optique, Palaiseau (France)
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard.
Unusual Interferometry via Translational-Internal Entanglement Nir Bar-Gill Michal Kolar Tomas Opatrny Gershon Kurizki.
Quantum noise studies of ultracold atoms Eugene Demler Harvard University Funded by NSF, Harvard-MIT CUA, AFOSR, DARPA, MURI Collaborators: Ehud Altman,
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Eugene Demler Harvard University Collaborators:
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Eugene Demler Harvard University Robert Cherng, Adilet Imambekov,
Probing interacting systems of cold atoms using interference experiments Harvard-MIT CUA Vladimir Gritsev Harvard Adilet Imambekov Harvard Anton Burkov.
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Non-equilibrium dynamics of cold atoms in optical lattices Vladimir Gritsev Harvard Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Many-body dynamics of association in quantum gases E. Pazy, I. Tikhonenkov, Y. B. Band, M. Fleischhauer, and A. Vardi.
Energy Level diagram for n- 2 level atoms. Radiation from an Extended Sample Destroy photon Raise Energy level Interaction with Radiation field.
Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.
Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Takuya Kitagawa, Susanne Pielawa,
Nonequilibrium dynamics of interacting systems of cold atoms Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Vladimir Gritsev,
Probing phases and phase transitions in cold atoms using interference experiments. Anatoli Polkovnikov, Boston University Collaboration: Ehud Altman- The.
The Center for Ultracold Atoms at MIT and Harvard Quantum noise as probe of many-body systems Advisory Committee Visit, May 13-14, 2010.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
Coherence and decay within Bose-Einstein condensates – beyond Bogoliubov N. Katz 1, E. Rowen 1, R. Pugatch 1, N. Bar-gill 1 and N. Davidson 1, I. Mazets.
JILA June ‘95. BEC in external Potetnial V. Bagnato et al. Phys.Rev. 35, p4354 (1987) free space potential.
T. Kitagawa (Harvard), S. Pielawa (Harvard), D. Pekker (Harvard), R. Sensarma (Harvard/JQI), V. Gritsev (Fribourg), M. Lukin (Harvard), Lode Pollet (Harvard)
Atomic Bose-Einstein Condensates Mixtures Introduction to BEC Dynamics: (i) Quantum spinodial decomposition, (ii) Straiton, (iii) Quantum nonlinear dynamics.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
QUEST - Centre for Quantum Engineering and Space-Time Research Single mode squeezing for Interferometry beyond shot noise Bernd Lücke J. Peise, M. Scherer,
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES “Classical entanglement” and cat states.
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Atom-atom correlations A Thomas-Fermi density profile of size R TF,i (i=x,y,z) for the source MBEC, has a momentum distribution of width ~1/ R TF,i. The.
Meet the transmon and his friends
Bose-Einstein condensates in random potentials Les Houches, February 2005 LENS European Laboratory for Nonlinear Spectroscopy Università di Firenze J.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Superfluid dynamics of BEC in a periodic potential Augusto Smerzi INFM-BEC & Department of Physics, Trento LANL, Theoretical Division, Los Alamos.
Interference in BEC Interference of 2 BEC’s - experiments Do Bose-Einstein condensates have a macroscopic phase? How can it be measured? Castin & Dalibard.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Probing fast dynamics of single molecules: non-linear spectroscopy approach Eli Barkai Department of Physics Bar-Ilan University Shikerman, Barkai PRL.
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir.
Goren Gordon, Gershon Kurizki Weizmann Institute of Science, Israel Daniel Lidar University of Southern California, USA QEC07 USC Los Angeles, USA Dec.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Hidden topological order in one-dimensional Bose Insulators Ehud Altman Department of Condensed Matter Physics The Weizmann Institute of Science With:
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Interazioni e transizione superfluido-Mott. Bose-Hubbard model for interacting bosons in a lattice: Interacting bosons in a lattice SUPERFLUID Long-range.
Probing interacting systems of cold atoms using interference experiments Vladimir Gritsev, Adilet Imambekov, Anton Burkov, Robert Cherng, Anatoli Polkovnikov,
Shanxi University Atomic Physics Chapter 7 The interaction of atoms with radiation Atomic Physics.
Anderson localization of weakly interacting bosons
Atomic BEC in microtraps: Localisation and guiding
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Part II New challenges in quantum many-body theory:
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Spectroscopy of ultracold bosons by periodic lattice modulations
Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov.
Quantum computation using two component Bose-Einstein condensates
a = 0 Density profile Relative phase Momentum distribution
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

Dephasing and noise in weakly- coupled Bose-Einstein condensates Amichay Vardi Y. Khodorkovsky, G. Kurizki, and AV PRL 100, (2008), e-print arXiv: Erez Boukobza, Maya Chuchem, Doron Cohen, and AV PRL, in press (2009), e-print arXiv: I. Tikhonenkov and AV PRL, submitted, e-print arXiv:

Matter-wave interference Andrews et. al., Science 275, 637 (1997) Fringe visibility is proportional to SP coherence = N 1 + N 2

Freely expanding condensates d x z y

Coherent preparation Equal populations: Well defined relative-phase Population difference:

Fock preparation Population difference: N 1 - N 2 Undefined relative phase between the two BECs Does the Fock preparation give interference fringes ?

Fringes in the Fock preparation Fock states are superpositions of coherent states: Any single-shot interferometric measurement constitutes a single phase-projection. Each shot gives fringes with random phase: While the multi-shot density averages out to:

Coherent splitting of a BEC T. Schumm et al., Nature Physics 1, 57 (2005)

Coherent splitting of a BEC The mere existence of interference patterns does not indicate Initial SP coherence - need to verify reproducible fringe position. T. Schumm et al., Nature Physics 1, 57 (2005)

Outline Assume a coherent preparation. Interactions cause ‘Phase-Diffusion’. How long will SP coherence survive ? 1.PD between weakly-coupled BECs - ‘Phase Locking’. 2.Control of PD by noise. 3.Sub shot-noise interferometry and PD between atoms and molecules.

Model: a bosonic Josephson junction

Total number conservation Hence coherence is characterized by the length of the Bloch vector restricted to be inside the sphere. Fringe Visibility: LxLx LyLy LzLz 

Coherent = classical states SU(2) coherent states: Gross-Pitaevskii classical (mean-field) energy functional with  :

Interaction regimes Rabi regime Weak interaction, linear (perturbed) L x eigenstates Josephson regime Intermediate strong interaction Nonlinear ‘islands’ in a linear ‘sea’ Separated by ‘figure-8’ separatrix Fock regime Strong interaction, nonlinear ‘sea’ area less than the Planck cell (perturbed) L z eigenstates

Classical dynamics u>2 ‘ self trapping’ A. Smerzi et al., PRL 79, 4750 (1997). M. Albeiz et al., PRL 95, (2005).

Phase ‘diffusion’ in the Fock regime Coherent state preparation: binomial superposition of Fock states Evolve with J = 0, U ≠ 0, . Ut For  and

t d / t rev First phase diffusion experiment M. Greiner, O. Mandel, T. Haensch., and I. Bloch, Nature 419, 51 (2002). VBVB VAVA

Slow phase-diffusion as a probe of number-squeezing G.-B. Jo et Al., PRL 98, (2007)

‘Phase locking’ S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and J. Schmiedmayer, Nature 449, 324 (2007) u ≈ 5u ≈ ∞u ≈ 300u ≈ 100 N ~ 1000

Phase-diffusion between weakly coupled condensates u=10 4 u=10 3 u=10 2 u=10  N=1000 E. Boukobza, M. Chuchem, D. Cohen, and AV, PRL, in press (2009). Phase locking in the Josephson regime is phase-sensitive :

Semiclassical quantization Planck cell: Low energy ‘sea’ levels Separatrix levels High energy degenerate ‘island’ Um 2 levels ‘sea’ ‘islands’ separatrix

Semiclassical interpretation

How good is semiclassics ? n=1000 u=1000

Correlation time of Phase-diffusion Linearization about

Quantum Zeno control of phase-diffusion Y. Khodorkovsky, G. Kurizki, and AV, PRL 100, (2008) Long correlation times: t c for phase diffusion in BEC is of order ms Slow down phase diffusion by frequent measurements / noise. Since phase diffusion is along the L x axis, noise has to project onto onto L x (measure odd-even population imbalance - quasimomentum). Hence site indiscriminate noise such as stochastic modulation of the barrier height.

QZE reminder For t«t c =   , SP coherence decays quadratically Frequent projective measurements of L x ( g 1,2 (1) ) at intervals: SP dephasing slows down as  t  0 L. A. Khalfin, JETP Lett. 8, 65 (1968). B. Misra and E. C. G. Sudarshan, J. Math. Phys. Sci. 18, 756 (1977).

QZE limit: Uncorrelated, Markovian noise: Quantum kinetic master equation: Linearization of the master equation gives the QZE result: QZE control of phase-diffusion

Bose enhancement of QZE As opposed to log(N) (or N 1/2 ) decoherence-free diffusion time: Extended phase-diffusion time, depends linearly on N :

 Preparation with noise numerical (lines) vs. analytic (symbols) N=100 N=200 N=400 N=100N=200N=400 N=100 N=150 N=300 N=100 Rabi: Josephson:

Comparison with local noise Initial coherent state Noiseless dynamics Macroscopic ‘cat’ state Site-localized noise  z =0.05J Site-indiscriminate noise  x =J N = 30 u = 2 t = 2.4 J

Atom-molecule dephasing in a sub-shot- noise SU(1,1) matter-wave interferometer 2E a EmEm E    Optical coupling 2E a EmEm  Feshbach resonance Undepleted pump:

SU(1,1) Casimir operator: Fock states: k - Bargmann index m = 0,1,2,…

Two-atom coherent states KxKx KyKy KzKz  }

Atom-molecule interferometer KxKx KyKy KzKz (a) (b),(c) (d) KyKy KzKz KxKx (c) (b) (a)(d)

Heisenberg-limited precision

Introduce interactions - dephasing For sinh  >> 1 sin(ut) ~ ut sinh  ~ 2n

Fringe visibility KxKx KyKy KzKz (a) (b),(c) (d) Time domainFrequency domain

Co-Authors Gershon Kurizki Weizmann Institute Doron Cohen BGU Maya Chuchem MSc, BGU Erez Boukobza Postdoc, BGU Amichay Vardi BGU Igor Tikhonenkov Research Fellow, BGU Yuri Khodorkovsky MSc BGU  WIS

Conclusions Phase diffusion between weakly-coupled Bose condensates (Josephson regime) is phase-sensitive. It has a long (~1-10ms) correlation time. Thus, it may be slowed down by frequent (projective) or continuous measurement of the primitive quasi-momentum. The obtained QZE is Bose stimulated due to the transition from log(N)- to N-dependent characteristic diffusion times. In atom-molecule systems, the inherent phase-squeezing may be use to do interferometry below the standard quantum limit. But, since it comes at the price of number-stretching, atom- molecule phase diffusion time is ~1/N.