TropicalM. D. Eastin TC Lifecycle and Intensity Changes Part I: Genesis Hurricane Katrina (2005) August 24-29
TropicalM. D. Eastin Outline Tropical Cyclone Genesis Large-Scale Factors Easterly Waves and MCVs CISK Mechanism WISHE Mechanism VHT Mechanism
TropicalM. D. Eastin TC Genesis Genesis: The transformation of a “disorganized” cold-core convective system into a self-sustaining synoptic-scale warm-core vortex with a cyclonic circulation at the surface Necessary (but not sufficient) Conditions: Pre-existing convection Significant planetary vorticity Favorable wind shear pattern Moist Mid-troposphere Warm ocean with deep mixed layer Conditionally unstable atmosphere
TropicalM. D. Eastin Pre-existing Convection: Source of latent heating Persistent heating in one area will lower the local surface pressure and begin to converge air toward the low pressure (recall the hypsometric equation) TC Genesis
TropicalM. D. Eastin Significant Planetary Vorticity: Convection near the equator results in little if any rotation in the low-level inflow Convection off the equator will contain rotation in the low level inflow due to appreciable Coriolis forcing Systems need to be ~5º off the equator in order to have a chance for development TC Genesis
TropicalM. D. Eastin Favorable Wind Shear Pattern: Wind shear is often defined as the vector difference between winds at two altitudes (850 and 200 mb) Low magnitudes of shear (< 20 knots) are desired TC Genesis High westerly shearLow easterly shear Bad – convection torn apart Good – latent heat can concentrate in one area
TropicalM. D. Eastin Moist Mid-Troposphere: Dry air will lead to evaporation and cooling Cooling produces a surface high pressure, low-level divergence, sinking air, and a suppression of convection TC Genesis Red Areas = Dry Gray/Blue Areas = Moist GOES Water Vapor Image Strong downdrafts = Outflow Boundaries
TropicalM. D. Eastin Warm Ocean: Allows for sensible and latent heat fluxes from the ocean in order to sustain deep convection SSTs > 26.5ºC is the rule TC Genesis Deep Convection L Standard Flux Equations The inflowing air gains heat and moisture only if the ocean is warmer and moister than the air
TropicalM. D. Eastin Deep Oceanic Mixed Layer: Mixed layer: Nearly isothermal ocean layer from the surface to a depth where temperatures cool rapidly (the thermocline) Strong winds churn up cool water from the thermocline or below Deeper mixed layers prevent the cooling of surface waters Cold surface waters limit (or reverse) sensible and latent heat fluxes, reducing convection TC Genesis Mixed Layer
TropicalM. D. Eastin Conditionally Unstable Atmosphere: Lapse rate between the dry adiabatic and moist adiabatic lapse rates Parcels become unstable only when lifted to their Level of Free Convection (LFC) Further ascent produces latent heat release and locally warm air (lowers surface pressure) Frictional convergence produces lift TC Genesis Sounding on a Skew-T
TropicalM. D. Eastin Easterly Waves Origin: Develop over sub-Saharan Africa from instabilities along the African Easterly Jet Basics: Wavelengths of ~3000 km Move westward at 6-8 m/s easterly waves cross the Atlantic each year between July and October 7-9 develop into tropical cyclones Why do we care about easterly waves? Often emerge over warm waters with convection Like mid-latitude synoptic waves, have preferred regions of lift (east of the trough): helps generate persistent convection in the same location Often contain mid-level (but not surface) vortices Systems “pre-conditioned” for successful genesis
TropicalM. D. Eastin Mesoscale Convective Vortices (MCVs) Origin: Develop within persistent mesoscale convection from heating aloft (convection) and cooling below (cold downdrafts) Basics: Confined to mid-levels with little or no signature at the surface Often present in easterly waves Dynamically stable (last several days) Multiple convective cycles Can emerge from the continental U.S. and developed into tropical cyclones (e.g. Hurricane Danny 1997) Why do we care about MCVs? Often emerge over warm waters with convection Systems “pre-conditioned” for successful genesis Cold Typical MCV Cross-Section Warm Positive Vorticity Negative Vorticity
TropicalM. D. Eastin TC Genesis One of the greatest enigmas of tropical meteorology: How do we transform a cold-core synoptic-scale disturbance with a mid-level vortex to a warm-core system with a surface vortex? “This question has been asked at every tropical cyclone conference since the dawn of time.” (Dr. Bill Gray, 2003)
TropicalM. D. Eastin Convective Instability of the Second Kind (CISK): First proposed by Jule Charney in 1964 Assumes the atmosphere is conditionally unstable Requires the presence of a finite amplitude synoptic scale disturbance (easterly wave) Assumes latent heat release results from synoptic-scale frictional convergence Remaining question: How does the surface vortex form? Genesis via the CISK Mechanism Jule Charney
TropicalM. D. Eastin Genesis via the CISK Mechanism 1 Friction with surface causes inflow into the disturbance to be “deflected” inward toward the surface center. Mass continuity dictates upward motion must result. This process is called “Ekman Pumping” Upward motion causes saturation and thus latent heat release. If conditionally unstable, upward motion will continue and enhance secondary circulation. Vortex will stretch, which will develop and intensify low-level cyclonic vorticity (through conservation of angular momentum) 2 Latent Heat Release L Charney and Eliassen (1964) showed that CISK developed a TC with a diameter of 100 km in 2.5 days (similar to observations)
TropicalM. D. Eastin Wind Induced Surface Heat Exchange (WISHE): First proposed by Kerry Emanuel in 1986 Assumes the tropical atmosphere is not conditionally unstable, but rather near neutral to moist convection (i.e. the thermodynamic profile is moist adiabatic) Assumes the primary instability is the thermodynamic difference between ocean and the boundary layer air (i.e. sensible and latent heat fluxes are crucial) Genesis requires the presence of a finite amplitude disturbance (i.e. an easterly wave or MCV) Remaining question: How does the surface vortex form? Genesis via the WISHE Mechanism Kerry Emanuel
TropicalM. D. Eastin Genesis via the WISHE Mechanism a. Prior convective cycle creates a MCV. Continued stratiform rain leads to cooling and a mesoscale downdraft, which transports the mid-level vorticity and low-θ e air to the surface b. New surface cyclone envokes sensible and latent heat fluxes. Frictional driven inflow begins to warm and moisten, and develop new convection. c. Downdrafts disappear, convection regularly occurs in near neutral air, warm core gradually develops, further vortex intensification near the surface
TropicalM. D. Eastin Vortical Hot Towers (VHT): First proposed by Mike Montgomery in 2004 Assumes the atmosphere is conditionally unstable Assumes the preferred route to genesis is from multiple “merger events” between convective-scale cumulonimbus towers that possess intense cyclonic vorticity Genesis requires the presence of a finite amplitude disturbance (easterly wave or MCV) for a background vorticity source Remaining question: How does the surface vortex form? Genesis via the VHT Mechanism Mike Montgomery
TropicalM. D. Eastin Genesis via the VHT Mechanism a. Hot towers (buoyant updrafts) develop and feed off the conditional instability. Minimal low-level vorticity. b. Upward acceleration leads to vorticity stretching and low-level convergence (via angular momentum conservation) of background vorticity Considerable low-level vorticity
TropicalM. D. Eastin Genesis via the VHT Mechanism Observational Evidence: Tropical Storm Gustav (2002) Vertically sheared from the northeast Exposed low-level circulation Convection confined to the southwest Episodic convective bursts (hot towers) developed multiple low-level vortices that rotated around to the northeast Shear Vector Low-level vortices
TropicalM. D. Eastin Genesis via the VHT Mechanism z = 0.67 km Low-level vorticity maxima associated with two distinct hot towers are present Roughly 0.5 hrs later the maxima have merged into a single stronger low-level vorticity maximum The low-level vortex develops through multiple merger events.
TropicalM. D. Eastin TC Lifecycle and Intensity Changes Part I: Genesis Summary Necessary Large-Scale Conditions Pre-existing convection Significant planetary vorticity Favorable wind shear pattern Moist Mid-troposphere Warm ocean with deep mixed layer Conditionally unstable atmosphere Easterly Waves (origin, structure, importance) Mesoscale Convective Vortices (origin, structure, importance) Genesis Mechanisms CISK (assumptions, physical processes) WISHE (assumptions, physical processes) VHTs (assumptions, physical processes)
TropicalM. D. Eastin References Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance., J. Atmos. Sci., 43, Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, Hendricks, E. A., M. T, Montgomery, and C. A. Davis, 2004: On the role of “vortical” hot towers in formation of tropical cyclone Diana (1984), J. Atmos. Sci., 61, Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63,